《有理数基本概念习题集.doc》由会员分享,可在线阅读,更多相关《有理数基本概念习题集.doc(16页珍藏版)》请在三一办公上搜索。
1、有理数基本概念习题集选择题1. ()下列说法正确的是( )。 的相反数一定是;. 一定大于0;一定是负数;的倒数一定是2. ()下列说法正确的是( )。(概念不清!) 0的倒数是0,0的相反数是0; . 0没有倒数,但0的相反数是0;0没有相反数,但0的倒数是0; 不能确定。3. 实数在数轴上的位置如图所示,则化简代数式的结果是( )。ab0 ; . ; 。4. ()实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是( )。(数轴概念的应用)0abA B C D5. ()一个数的倒数为本身,则这个数为( )。A0 B1 C1D16. 实数x,y在数轴上的位置如图所示,则()。AB CD
2、7. ()已知,且异号,则的值为( )。A9 B9 C9或3 D38. ()如果一个数的平方与这个数的绝对值相等,那么这个数为( )A0 B1 C1 D0,1或19. ()在数轴上,与表示数1的点的距离等于5的点表示的数为( )。A4 B6 C5 D4或610. ()若,且,那么的值为( )。A5或1 B1或-1 C5或-5 D-5或-111. 如果这两个数的绝对值相等,则这两个数为( )。(重点题!)A相等 B互为相反数 C相等或互为相反数 D都为012. 若,则的值不可能是( )。 A0 B1 C2 D-213. 下列说法正确的是()。 A绝对值等于本身的数只有正数; B 互为相反数的两个
3、数的绝对值相等;C不相等的两个数的绝对值不相等; D绝对值相等的数一定相等。14. 绝对值小于的整数有( ) A5个 B 6个 C7个 D8个15. 在下列大小关系中,错误的是( ) A B C D16. 在数轴上表示有理数,如图所示,下列关系式子正确的是( )。 0A; B;C; D 。17. 如果数的绝对值大于数的绝对值(即),那么( )。 A B C异号 D不能确定。 18. 一个数在数轴上对应的点与它的相反数在数轴上对应的点之间的距离为6,则此数为( )。 A B C3 D6。19. ()下列说法正确的是( ) A两数相加,符号不变,并把绝对值相加; B同号两数相加,取相同的符号,并把
4、绝对值相加;C异号两数相加,取较大的加数的符号; D异号两数相加,用绝对值较大的数减去绝对值较小的数。20. 如果两个数的和是正数,那么( ) A两个数都是正数; B两个数中,一个正数,一个是0;C两个数异号,但正数绝对值较大; D以上三种情况都有可能。21. ()如果为三个有理数,且,则( ) A三个数有可能同号; B三个数一定都是0;C一定有两个数互为相反数; D一定有一个数的相反数等于其余两个数的和。22. ()已知,且,则是( ) A零 B正数 C负数 D非负数。23. 下列说法正确的是( )。 A对于任意有理数,若,则; B对于任意有理数,若;C对于任意有理数,若,则; D若,则。2
5、4. ()如果,则( )。 A同号; B异号;C为任意有理数; D同号或中至少一个为零。25. 两个非零有理数的和为零,则它们的商是( ) A0 B C+1 D不能确定26. 在有理数中,不存在这样的数( )()。A 既不是整数,也不是负数; B. 既不是正数,也不是负数;C既是正数,又是负数; D. 既是分数,又是负数。27. 下列关于“零”的说法中,正确的个数有( ) 是整数,也是有理数; 不是正数,也不是负数;不是整数,是有理数; 是有理数,不是自然数。A0个; B 1个;C 2个; D 3个。28. 下列说法正确的是( )。A 一个有理数不是正数就是负数; B一个有理数不是整数就是分数
6、;C 整数是正整数和负整数的统称; D有理数是指正有理数、负有理数、0、整数和分数这五类数。29. 下列说法中,错误的是( )。A0也有相反数; B 符号不同的两个数互为相反数;C 任何一个有理数都有相反数; D正数的相反数是负数。30. 一个数的相反数是非负数,那么这个数一定是( )。A正数; B 负数;C 非正数; D 非负数。31. 为有理数,则下列说法正确的是( )。A为正数; B为负数;C一定有一个表示负数; D是一对相反数。32. 下列说法正确的是( )。A 若,则,反之,若,则;B 若,则必为负数;C 绝对值不大于3的整数有6个,分别是1,2,3; D 任何有理数的绝对值都是非负
7、数。33. 若 a 是有理数, 则 4a与 3a 的大小关系是( )。A4a 3a B.4a 3a C.4a 3a D.不能确定34. 数轴上的点A、B、C、D分别表示数a、b、c、d,已知A在B的右侧,C在B的左侧,D在B、C之间,则下列式子成立的是( )。A、abcdB、bcda C、cdabD、cdba35. 如图所示,数轴上一个动点A向左移动2个单位长度到达B点,在向右移动6个单位到达C点,若点C表示的数为1,则A点表示的数为( )。620CAB A8; B 4; C -4; D -3。36. 数轴上有两个点为A、B,它们表示的数分别是,则A、B两点之间的距离可表示为( )。A; B;
8、 C或; D。37. 若,则的取值范围是( )。A; B; C; D。38. 若,则的取值范围是( )。A; B; C; D。39. ()若,则的取值范围是( )。A; B; C; D。40. ()若,则的取值范围是( )。A; B; C; D。41. 若是有理数 ,则下面说法正确的是( )。A一定为正数; B一定为负数;C一定为负数; D一定为正数。42. 当,则的关系是( )。A都是0; B互为相反数;C相等; D相等或互为相反数。43. 若,则下列说法正确的是( )。A都是0; B互为相反数; C相等; D相等或互为相反数。44. ()若,则有理数的关系是( )。A都是0; B互为倒数;
9、C至少有一个数为0; D一个是0,而另一个不是0。45. ()若,则有理数的关系是( )。A都是0; B互为相反数;C至少有一个数为0; D不都是0。46. 若,则有理数的关系是( )。A都是0; B互为相反数;C互为倒数; D为0,不能为0。47. 两个数相加,如果和小于每个加数,那么这两个数( )。A都是正数; B同为负数;C至少有一个正数; D至少有一个负数。48. m是有理数,则 ( )。 A.可以是负数 B.不可能是负数 C.必是正数 D.可以是正数也可以是负数49. 如果a是有理数,下列四种说法:(1)a2和a都是正数;(2)aa,那么a一定是负数;(3) a和a在数轴上的位置分别
10、在原点的两侧;(4)实数a的倒数是 , 其中正确的个数是()。 A. 0B. 1C.2D.350. 较小的数减去较大的数,所得的差一定是( )。 A. 0B. 正数C.负数D.0或负数51. 若,且,则( )。 A. B. C. D. 52. ()一个数和它的相反数之积是( )。 A. 0B. 正数C.负数D.0或负数53. ,的大小顺序是( )。A. B. C. D. 54. 已知:a 0 b0 |a| |b| b1+aa ()1+a a 1bb()1+a 1b ab ()1b 1+ aba55. 在数轴上,点A对应的数是2006,点B对应的数是17,则A、B两点的距离是()(A)1989(
11、B)1999(C)2013(D)202356. 有如下四个命题(结论):两个符号相反的分数之间至少有一个正整数;两个符号相反的分数之间至少有一个负整数;两个符号相反的分数之间至少有一个整数;两个符号相反的分数之间至少有一个有理数其中真命题(正确结论)的个数为()(A)1(B)2(C)3(D)457. 下列说法正确的是( )(A)0是最小的整数;(B)0是最小的正数;(C)0没有倒数; (D)0没有绝对值。58. 下列关于零的说法,正确的有( )自然数; 正数; 非正数; 有理数。最小的正数 最小的整数 最小的自然数 绝对值最小的数(A)1(B)2(C)3(D)459. 数轴上原点和原点左边的点
12、表示的数为( )。(A)负数; (B)正数;(C)非正数; (D)非负数。60. 下列说法正确的是( )。A比负数大的是正数; B若 ,则是正数,是负数;C数轴上的点离原点越远,数就越大 ; D若,则为正数;若,则为负数。61. 下列说法正确的是( )。(A)绝对值较大的数较大; (B)绝对值较大的数较小;(C)绝对值相等的两数相等; (D)相等两数的绝对值相等。62. 下列说法正确的是( )。(A)正数和负数互为相反数; (B)任何一个数的相反数都与它本身不相同;(C)任何一个数都有它的相反数; (D)数轴上原点两旁的两个点表示的数互为相反数。63. 下列说法正确的是( )。(A)一定是负数
13、; (B)只有两个数相等时,它们的绝对值才相等;(C)若,则互为相反数; (D)若一个数小于它的绝对值,则这个数是负数。64. 下列结论中,正确的有( )。 符号相反且绝对值相等的数互为相反数; 一个数的绝对值越大,表示它的点在数轴上离原点越远; 两个负数,绝对值大的它本身反而小; 正数大于一切负数; 在数轴上,右边的数总是大于左边的数。(A)2个 ; (B)3个; (C)4个; (D)5个;65. 如果,那么等于( )。 (A) ; (B); (C); (D);66. 若,则中最大的一个数是( )。(A) ; (B); (C); (D)不能确定;67. ()比大( )。(注意提问!)(A)2
14、 ; (B)-2; (C); (D)3;68. .已知|x|=3,|y|=7且xy0,则x+y=()。A . 10;B. 4;C. 10;D. 4.69. 下列结论中,正确的有( )()。(1)在有理数集合中,没有最大的数。(2)在整数集合中,最大的负数是-1,最小的正数是+1。(3)在有理数集合中,绝对值最小的数是0。(4)在整数集合中,绝对值最小的数是1。A 1个; B 2个; C 3个 D 4个70. 若a是有理数,下列结论中正确的是( )。A a表示正有理数。 B -a表示负有理数。C a与-a必有一个负有理数。 D a与-a互为相反数。71. 如果的相反数恰好是有理数a的绝对值,那么
15、a的值是( )。A.; B. ; C. 或 D. 不存在。72. 若a为有理数,则下列各式正确的是( )。A. a20; B.; C. -a20; B 一定是正数; C 一定是负数; D a的正偶次幂是非负数。74. a+b0,则有( )。A a0,b0 B a0 C a0,b0,b075. 当a0时,a与-a的大小关系是():A .a-a;D. a-a.76. ()下列判断中正确的是( )。A 若,则a=b; B 若则ab ; C 若则aab,那么-a-b B 如果a0, ,那么a0, ,那么aab,那么。78. 如果m是一个不等于-1的负整数,那么m,, -m,这几个数从小到大的排列顺序是
16、( )。A ; B ;C ; D 。79. 0020200精确到百万分位,它的有效数字是( )。 A 2、0; B 2、0、2 ; C 2、0、2、0、0 ; D 0、0、2、0、2、0、0。80. ()下列说法中错误的是( )。A、a的绝对值为a B、a的相反数为a C、的倒数是a D、a的平方等于a的平方81. ()若a+b0,ab0,则( )。A a0,b0 B a0,b0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值82. 下列说法正确的个数是 ( )()。一个有理数不是整数就是分数 一个有理数不是正数就是负数一个整数不是正
17、的,就是负的 一个分数不是正的,就是负的A 1 B 2 C 3 D 4 83. ()下列说法正确的是 ( ) ()。0是绝对值最小的有理数 相反数大于本身的数是负数数轴上原点两侧的数互为相反数 两个数比较,绝对值大的反而小A B C D 84. 若两个有理数的和是正数,那么一定有结论( )()。(A)两个加数都是正数; (B)两个加数有一个是正数;(C)一个加数正数,另一个加数为零; (D)两个加数不能同为负数85. 下列说法:最小的自然数是1;最小的整数是0;一个数的绝对值必大于这个数的相反数;小于;没有最小的负数;有理数可以分为正数和负数.其中正确的是( ) ()。A、2个B、3个C、4个
18、D、5个86. 计算:(2)100+(2)101的是( )。A . 2100 ; B. 1; C . 2; D . 210087. 比7.1大,而比1小的整数的个数是( )。A. 6 B. 7 C. 8 D. 988. 如果一个数的平方等于这个数本身,那么这个数只能是( )。A. 0 B . 1 C. 1 D. 0或189. ()已知8.6273.96,若x20.7396,则x的值等于( )。A. 8.6 B. 0.86 C. 0.86 D. 8690. 若,则关于两个数的正确结论为( )。A. 两个数都为负数; B. 两个数都为正数; C. 一个正数,一个负数; D.不能确定91. 若,则关
19、于两个数的错误结论为( )。A. 两个数都为负数; B. 两个数都为正数; C.一个正数,一个负数; D. 同号。92. 若,则关于两个数的正确结论为( )。A. 两个数必须都为0; B. 两个数中至少有一个数为0; C. 不能确定; 93. 两个非零有理数的和为零,则它们的商是( )。(A)0 (B) (C) (D)不能确定94. 一个数和它的倒数相等,则这个数是( )。(A)1 (B) (C) (D)和0。95. 如果,下列成立的是( )。(A) (B) (C)或(D)或。96. 用四舍五入法按要求对分别取近似值,其中错误的是( )。(A)(精确到)。 (B)(精确到百分位)。(C)(保留
20、两个有效数字)。 (D)(精确到)97. 的值是( )。(A)。 (B)。 (C)。 (D)。-1-198. 有理数在数轴上的对应点的位置如图所示:则( )。(A) 。 (B)。 (C)。 (D)。99. 下列各式中正确的是( )。(A)。 (B)。 (C)。 (D)。100. 若、互为相反数,、互为倒数,的绝对值为2,则代数式 的值为( )。 A、 B、3 C、 D、3或101. 校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了70米,此时张明的位置在( )。() A. 在家 B. 在学校 C. 在书店
21、 D. 不在上述地方102. 用四舍五入法按要求对0.05019分别取近似值,其中错误的是( )。 A0.1(精确到0.1); B0.05(精确到百分位);C0.05(保留两个有效数字); D0.0502(精确到0.0001)。103. 2003年5月19日,国家邮政局特别发行“万众一心,抗击非典”的邮票,收入全部捐赠给卫生部门,用以支持抗击“非典”斗争,其邮票发行量为12 500 000枚,用科学记数法表示正确的是( )。A、1.25105枚B、1.25106枚C、1.25107枚D、1.25108枚104. 四个整数a、b、c、d各不相等,且,则等于( )。 A、36 B、18 C、9 D
22、、8105. 四个互不相等的整数a、b、c、d,如果abcd=9,那么a+b+c+d等于( )。A、0 B、8 C、4 D、不能确定106. 如果a、b互为相反数,x、y互为倒数,m的绝对值为l,那么代数式:a+b+m2xy的值是( )。A、1 B、0 C,-1 D、2107. 如果两个非零的数互为相反数,则下列说法中错误的是( )。A它们的和一定为零; B它们的差一定为正数;C它们的积一定为负数; D它们的商一定等于-1。108. 6.80105精确到哪一位?有几个有效数字? ( )。 A十分位,有两个有效数字; B百分位,有三个有效数字;C千位,有三个有效数字; D百位,有两个有效数字。1
23、09. 30192四舍五入成有两个有效数字的近似值为( )。A30000; B3.0104; C3.1104; D3.02104。110. 下列说法正确的是( )。A近似数1.32和1.320精确度相同; B近似数78.0是精确到十分位,有两位有效数字;C近似数8千与8000的精确度相同; D近似数3.1416是精确到万分位。111. 某人的体重为56.4千克,这个数字是一个近似数,那么这个数的精确值X的范围是( )。A ; B ; C ; D 。(科学计数法与近似数问题,另找题做,一定弄懂!) 112. ()若是有理数,且,下列各式中成立的个数为( )。;。A1; B2; C3; D4。11
24、3. ()下列各式中一定成立的有( )。;。A1; B2; C3; D4。114. 满足下列条件的,不是相反数的是( )。A; B ; C ; D。115. 数轴上表示数的两点A,B ,则下列说法正确的是( )。A若,则; B若,则; C若,则A在B的左边; D若,则A在B的右边。116. 比较与的大小,正确的是( )。A; B ; C ; D以上都有可能。117. 若有两个有理数的积为正数,而它们的和为负数,则这两个数( )。A都是正数; B都是负数; C一正一负; D不能确定。118. 若五个有理数的积为负数,那么这五个数中,( ) 。A只有一个负数; B至少有一个负数; C都是负数; D
25、最多有三个负数。119. 若,那么等于( )。A; B0; C; D。120. 若,则=( )。A0; B10; C20; D以上答案都不对。121. 两数相减后,差比减数大,则减数应该是( )。A正数; B负数; C0; D不能确定。122. 下列说法中,正确的是( )。A 为有理数,则; B为有理数,则可能为负数; C为有理数,则; D为不为0的有理数,则与同号。123. 两个非0的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数( )。A一定相等; B一定互为相反数; C一定互为倒数; D相等或互为相反数。124. (黑龙江2003年试题)若,则的取值范围( )。A;
26、B; C; D。125. (广东2003年试题)已知的相反数为2,则等于( )。A0; B-1; C1; D。126. 若 则一定是( )。(A) 非负数; (B) 非正数; (C) 零 ; (D) 负数。127. 如果非零有理数满足,那么式子的值( )。A必为正数; B必为负数; C可正可负; D可能为零。128. 有理数在数轴上的位置如图,则下列各式的符号为负的是( )。A; B; C; D。129. 下列说法正确的是( )。A几个有理数相乘,当因数有奇数个时,积为负; B几个有理数相乘,当正因数有奇数个时,积为负; C几个有理数相乘,当负因数有奇数个时,积为负; D几个有理数相乘,当积为
27、负数时,则负因数有奇数个。130. ()如果,那么下列式子一定成立的是( )。A; B; C; D。131. 如果,那么的取值范围是( )。A; B; C; D。132. ()如果互为相反数,且全不为零,若,那么必有( )。A; B; C; D。133. 下面的式子中,正确的是( )。 (A) ; (B) ; (C) ; (D)。134. 若,则下列式子中,一定成立的是( )。A; B; C; D。135. 若,则( )。A; B; C; D。136. ()当时,可以化简为( )。A; B; C; D。137. ()若,则( )。A; B; C; D。138. 若,则化简的结果为( )。A;
28、B; C; D。139. ()若,那么=( )。A; B; C; D140. ()为自然数,则的计算结果是( )。A; B; C; D141. 在数轴上点到点A的距离为S ,点,点A对应的数值分别是和-5,则下面那个式子正确( )。(A) ; (B) ; (C) ; (D)。142. 如果代表有理数,并且,则( )。(A)同号; (B)异号; (C) ; (D)。143. 若,则按从小到大的顺序排列为( )。(A) ; (B) ; (C) ; (D)。144. 下列说法正确的是( )。A有理数的平方是正数; B小于1的数的平方小于原数; C如果一个数的偶次幂是非负数,那么这个数是任意有理数;
29、D负数的偶次幂一定大于这个数的相反数。145. 在下列各数中,不是有理数的是( ).A- BC3.14 D0146. 既不是整数,也不是负数的有理数是( )().A正分数 B正整数和正分数C正分数和0 D正分数、0和负分数147. 下列说法正确的是( )。A偶数可以分为正偶数和负偶数; B所有小数都可以化为分数; C在-1和+1之间含有无数个有理数; D正整数和负整数统称为有理数。148. 下列说法:有理数可分为小数和整数两大类;有理数除了整数就是分数;既不存在最小的负整数,也不存在最大的正整数;所有的整数除了正数就是0;正整数的集合、负整数的集合、正分数的集合、负分数的集合合并在一起就是有理
30、数集合。其中正确的个数有:()A0个 B1个 C2个 D3个149. 负整数的集合是指( )()A有理数的集合中去掉分数和0的集合; B整数集合中去掉正整数和0的集合; C整数集合中去掉正整数的集合; D有理数的集合中去掉正数和0的集合。150. 下列关于数轴的说法:数轴上的点只能表示整数;数轴是一条线段;数轴上的一个点只能表示一个数数轴上找不到既不表示正数,也不表示负数的点数轴上所有点表示的数都是有理数。 其中正确的是( ):()A1个 B2个 C3个 D4个151. 已知,则为( )A正数 B负数 C非负数 D非正数152. 已知,则等于( )。A9 B-9 C0 D9153. 已知,则的
31、值等于( )。A10 B-10 C0 D10154. 下列各组判断,正确的是( )。A若,则 B若,则 C若,则 D若,则155. 已知数轴上有三点A,B,C分别表示有理数a,3,-3,则表示( )。()AA,B两点到原点的距离和; BA,C两点的距离; CA,C两点到原点的距离和; DA,B两点的距离。156. 若是有理数,则的值为( )。(呢?)A一定是正数; B可能是正数,也可能是负数; C不可能是负数; D一定是负数。157. 下列说法正确的是( )。A两个数之差一定小于被减数; B减去一个负数,其差一定大于被减数; C减去一个正数,其差一定大于被减数; D0减去任何数,其差都是负数。158. 下列算式变形正确的是()。A 。; B; C; D 159. 表示( ).A4个-2相乘; B4个2相乘的相反数;C2个4相乘; D2个4相乘的相反数。160. 互为相反数,下列各组数中,互为相反数的一组是( ).A; B(n为正整数); C(n为正整数); D。