《毕业设计传感器与检测技术.doc》由会员分享,可在线阅读,更多相关《毕业设计传感器与检测技术.doc(23页珍藏版)》请在三一办公上搜索。
1、课程设计说明书传感器与检测技术【摘要】: 传感器技术是现代信息技术的重要基础之一。传感器的性能对自动化系统的功能起决定作用,在一般运用场合中传感器测量主要采用开环测量方式,这种方式结构简单,能满足一般精度的需求。但在高精度测量条件下,如电子分析天平,则必需采用闭环控制引入反馈环节,提高测量精度。本论文设计了一种用于高精度测量的反馈式力传感器。通过对位移量的处理输出反馈控制信号,使系统达到平衡状态。系统结构由前向通道和反馈控制两部分组成。本文给出了反馈控制模块设计制作方案,主要完成了单片机控制系统、1602显示模块、PID控制算法设计、系统电源电路的设计,并给出了具体参数、分析过程和调试结果及相
2、应的实物图。整个控制系统设计简洁,集成度较高,控制效果较好,达到了设计要求。【关键词】:传感器,设计 目 录第1章 传感器的基本知识 1.1.传感器的定义51.2.传感器的分类51.3.传感器的特性51.4.传感器的线性度,灵敏度,分辨力61.5.电阻式,电阻应变式,压阻式,热电阻传感器,传感器的迟滞特性介绍6第2章 对温度传感器的设计721 模拟输出IC传感器和数字输出IC传感器之间有什么差别?82.2 使用温度传感器时必须考虑哪些因素?92.3 IC温度传感器与热敏电阻有何不同?92.4 什么是自动风扇转速控制?10第3章光纤光栅传感器的应用113.1 光纤光栅传感器的优势113.2 光纤
3、光栅的传感应用123.3 传感器设计方案:15第4章对霍尔传感器的设计15参考文献:24第1章 传感器的基本知识1.1.传感器的定义国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。1.2.传感器的分类目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:1、按传感器的物理量分类,可分为位移
4、、力、速度、温度、流量、气体成份等传感器2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。1.3.传感器的特性传感器的特征包括静态特征和动态特征。传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传
5、感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。1.4.传感器的线性度,灵敏度,分辨力通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性
6、曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。灵敏度是指传感器在稳态工作情况下输出量变化y对输入量变化x的比值。它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。当传感器的输出、输入量的量纲相同时,灵敏
7、度可理解为放大倍数。提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。分辨力是指传感器可能感受到的被测量的最小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨力时,其输出才会发生变化。通常传感器在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。上述指标若用满量程的百分比表示,则称为分辨率。1.5.电阻式,电阻应变式,压阻式,热电阻传感器,传感器的迟滞特性介绍电阻式传感器
8、是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。当基片受到外力作用而产生形变时,各电阻值将发生变化,电
9、桥就会产生相应的不平衡输出。用作压阻式传感器的基片(或称膜片)材料主要为硅片和锗片,硅片为敏感 材料而制成的硅压阻传感器越来越受到人们的重视,尤其是以测量压力和速度的固态压阻式传感器应用最为普遍。热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200+500范围内的温度。迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出-一输入特性曲线不一致的程度,通常用这两条曲线之间
10、的最大差值MAX与满量程输出FS的百分比表示。第2章 对温度传感器的设计温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器(见下表)。IC温度传感器又包括模拟输出和数字输出两种类型。 热电偶应用很广泛,因为它们非常坚固而且不太贵。热电偶有多种类型,它们覆盖非常宽的温度范围,从?C200到2000。它们的特点是:低灵敏度、低稳定性、中等精度、响应速度慢、高温下容易老化和有漂移,以及非线性。另外,热电偶需要外部参考端。 RTD精度极高且具有中等线性度。它们特别稳定,并有许多种配置。但它们的最高工作温度只能达到400左右。它们也有很大的TC,且价格昂贵(是热电偶的4
11、10倍),并且需要一个外部参考源。 模拟输出IC温度传感器具有很高的线性度 (如果配合一个模数转换器或ADC可产生数字输出)、低成本、高精度(大约1%)、小尺寸和高分辨率。它们的不足之处在于温度范围有限(?C55150),并且需要一个外部参考源。 数字输出IC温度传感器带有一个内置参考源,它们的响应速度也相当慢(100 ms数量级)。虽然它们固有地会自身发热,但可以采用自动关闭和单次转换模式使其在需要测量之前将IC设置为低功耗状态,从而将自身发热降到最低。 与热敏电阻、RTD和热电偶传感器相比,IC温度传感器具有很高的线性,低系统成本,集成复杂的功能,能够提供一个数字输出,并能够在一个相当有用
12、的范围内进行温度测量。 温度测量传感器比较。21 模拟输出IC传感器和数字输出IC传感器之间有什么差别? 模拟输出IC传感器输出与温度成正比的电压或电流,而数字输出IC传感器通过其内置的ADC将将传感器的模拟输出转换为数字信号。 IC温度传感器的实际检测是采用一个简单的晶体管p-n结,通过测量其基极-发射极结电压(VBE)检测温度变化。p-n结两端的电压具有大约2 mV/的固有温度依赖关系(见图1)。这也被称为二极管温度传感器。通过内置ADC对传感器的模拟输出进行数字化,可以得到其数字输出。 图1:本图示出硅二极管的电阻响应特性与温度的关系曲线。2.2 使用温度传感器时必须考虑哪些因素? 有两
13、个主要考虑因素:需要测量什么和必须以多高的精度进行测量。这两个因素受使用的传感器类型和它与温度测量点的相对位置 (即传感器的安装位置) 的影响。这一点对于像IC传感器这样的固有自身发热传感器很重要,因为它测量的温度实质上是晶体管p-n结二极管本身的温度。 对于IC温度测量,如CPU本地温度,温度测量并不那么直接。精确的测量方法是使用一个集成在CPU之内的温度二极管监测器(见图2)。 图2:可将温度二极管测量电路集成到在CPU上的本地温度传感器,或在印制电路(PCB)板上作为一个分立二极管连接晶体管。2.3 IC温度传感器与热敏电阻有何不同? 尽管这两种传感器都具备小外形尺寸并且提供模拟输出,但
14、IC传感器具有更高的线性和更宽的工作温度范围。它可以集成其它的内置功能,例如提供数字输出的ADC,数模转换器(DAC)、参考电压源和风扇控制电路。IC传感器集成复杂电路的能力意味着比热敏电阻的总系统成本低(热敏电阻需要许多附加的外部元件),并且随着IC制造线宽的进一步缩小,IC传感器的封装尺寸也将减小。 数字输出温度传感器比模拟输出温度传感器有哪些优势? 与其它三种主要类型温度传感器(热电偶、RTD和热敏电阻)不同,数字输出IC温度传感器不需要外部线性化电路转换。此外,由于其IC集成特性,它们自然会降低成本。它们可与常见的计算机总线(例如I2C总线、SPI总线和SMBus等)连接。而且,它们允
15、许与远端其它传感器进行通信,以完成一些控制任务(例如风扇转速控制和总体系统温度控制)。 2.4 什么是自动风扇转速控制? 自动风扇转速控制实际上是使用一个本地数字输出温度传感器来检测CPU的实际管芯温度。将传感器的输出馈送给一个控制CUP散热风扇转速的脉冲宽度调制器(PWM)或DAC。这样可将CPU的温度保持在设计要求之内(见图3)。风扇转度控制在消费电子产品中正变得越来越重要,在此类应用中,减小风扇声学噪音、降低功耗和提高可靠性都是重要改进因素。 图3:这一简单的低成本PWM驱动电路控制散热风扇的转速。第3章光纤光栅传感器的应用3.1 光纤光栅传感器的优势与传统的传感器相比,光纤Bragg光
16、栅传感器具有自己独特的优点:(1) 传感头结构简单、体积小、重量轻、外形可变, 适合埋入大型结构中, 可测量结构内部的应力、应变及结构损伤等, 稳定性、重复性好;(2) 与光纤之间存在天然的兼容性, 易与光纤连接、低损耗、光谱特性好、可靠性高;(3) 具有非传导性, 对被测介质影响小, 又具有抗腐蚀、抗电磁干扰的特点, 适合在恶劣环境中工作;(4) 轻巧柔软, 可以在一根光纤中写入多个光栅, 构成传感阵列, 与波分复用和时分复用系统相结合, 实现分布式传感;(5) 测量信息是波长编码的, 所以, 光纤光栅传感器不受光源的光强波动、光纤连接及耦合损耗、以及光波偏振态的变化等因素的影响, 有较强的
17、抗干扰能力;(6) 高灵敏度、高分辩力。正是由于具有这么多的优点,近年来,光纤光栅传感器在大型土木工程结构、航空航天等领域的健康监测,以及能源化工等领域得到了广泛的应用。光纤Bragg光栅传感器无疑是一种优秀的光纤传感器,尤其在测量应力和应变的场合,具有其它一些传感器无法比拟的优点,被认为是智能结构中最有希望集成在材料内部,作为监测材料和结构的载荷,探测其损伤的传感器。3.2 光纤光栅的传感应用土木及水利工程中的应用土木工程中的结构监测是光纤光栅传感器应用最活跃的领域。力学参量的测量对于桥梁、矿井、隧道、大坝、建筑物等的维护和健康状况监测是非常重要的.通过测量上述结构的应变分布,可以预知结构局
18、部的载荷及健康状况.。光纤光栅传感器可以贴在结构的表面或预先埋入结构中,对结构同时进行健康检测、冲击检测、形状控制和振动阻尼检测等,以监视结构的缺陷情况.。另外,多个光纤光栅传感器可以串接成一个传感网络,对结构进行准分布式检测,可以用计算机对传感信号进行远程控制。(1)在桥梁安全监测中的应用目前, 应用光纤光栅传感器最多的领域当数桥梁的安全监测。斜拉桥斜拉索、悬索桥主缆及吊杆和系杆拱桥系杆等是这些桥梁体系的关键受力构件,其他土木工程结构的预应力锚固体系,如结构加固采用的锚索、锚杆也是关键的受力构件。上述受力构件的受力大小及分布变化最直接地反映结构的健康状况,因此对这些构件的受力状况监测及在此基
19、础上的安全分析评估具有重大意义。加拿大卡尔加里附近的Beddington Trail 大桥是最早使用光纤光栅传感器进行测量的桥梁之一(1993 年), 16 个光纤光栅传感器贴在预应力混凝土支撑的钢增强杆和炭纤复合材料筋上,对桥梁结构进行长期监测, 而这在以前被认为是不可能。德国德累斯顿附近A 4 高速公路上有一座跨度72 m的预应力混凝土桥, 德累斯顿大学的Meis-sner 等人将布拉格光栅埋入桥的混凝土棱柱中, 测量荷载下的基本线性响应, 并且用常规的应变测量仪器作了对比试验, 证实了光纤光栅传感器的应用可行性。瑞士应力分析实验室和美国海军研究实验室, 在瑞士洛桑附近的V aux 箱形梁
20、高架桥的建造过程中, 使用了32个光纤光栅传感器对箱形梁被推拉时的准静态应变进行了监测, 32个光纤光栅分布于箱形梁的不同位置、用扫描法- 泊系统进行信号解调。2003年6月,同济大学桥梁系史家均老师主持的卢浦大桥健康检测项目中,采用了上海紫珊光电的光纤光栅传感器,用于检测大桥在各种情况下的应力应变和温度变化情况。整个检测项目的实施主要包括传感器布设、数据测量和数据分析三大步。在卢浦大桥选定的端面上布设了8个光纤光栅应变传感器和4个光纤光栅温度传感器,其中8个光纤光栅应变传感器串接为1路,4个温度传感器串接为1路,然后通过光纤传输到桥管所,实现大桥的集中管理。数据测量的周期根据业主的要求来确定
21、,通过在桥面加载的方式,利用光纤光栅传感网络分析仪,完成桥梁的动态应变测试。(2)在混凝土梁应变监测中的应用1989年, 美国Brown University 的Mendez 等人首先提出把光纤传感器埋入混凝土建筑和结构中, 并描述了实际应用中这一研究领域的一些基本设想。此后, 美国、英国、加拿大、日本等国家的大学、研究机构投入了很大力量研究光纤传感器在智能混凝土结构中的应用。在混凝土结构浇注时所遇到的一个非常棘手的问题是: 如何才能在混凝土浇捣时避免破坏传感器及光缆。光纤Bragg光栅通常写于普通单模通讯光纤上, 其质地脆, 易断裂, 为适应土木工程施工粗放性的特点, 在将其作为传感器测量建
22、筑结构应变时,应采取适当保护措施。一种可行的方案是:在钢筋笼中布置好混凝土应变传感器的光纤线路后, 将混凝土应变传感器用铁丝等按照预定位置固定在钢筋笼中, 然后将中间段用纱布缠绕并用胶带固定。而对粘贴式钢筋应变传感器一般则用外涂胶层进行保护。2003年9月,上海紫珊光电技术有限公司自主研发的光纤光栅传感应变计埋设于混凝土中对北京中关村某标志性建筑进行静态应变测量。上海紫珊光电技术有限公司自主研发的光线光栅应变计具有精度高(一般为1,如果是小量程的应变测量,可以达到0.5)、可靠性高、安装方式多样、使用方便等优点,成功应用于北京中关村某标志性建筑中,布设在钢梁上并埋设在混凝土中对支柱钢梁进行施工
23、过程监测。(3)在水位遥测中的应用在光纤光栅技术平台上研制出的高精度光学水位传感器专门用于江河、湖泊以及排污系统水位的测量。传感器的精度可以到达0.1%FS。光纤安装在传感器内部,由于光纤纤芯折射率的周期性变化形成了FBG,并反射符合布拉格条件的某一波长的光信号。当FBG与弹性膜片或其它设备连接在一起时,水位的变化会拉伸或压缩FBG。而且,反射波长会随着折射率周期性变化而发生变化。那么,根据反射波长的偏移就可以监测出水位的变化。(4)在公路健康检测中的应用公路健康监测必要性:交通是与人们息息相关的事情,同样也是制约城市发展的主要因素,可以说交通的好坏可以直接决定一个城市的发展命运。每年国家都要
24、投入大量资金用在公路修建以及维护上,其中维护费用占据了很大一部分。即便是这样,每年仍然有大量公路遭到破坏,公路的早期损坏已成为影响高速公路使用功能的发挥和诱发交通事故的一大病害。,而破坏一般都是因为汽车超载,超速以及自然原因引起的,并且也和公路修建的质量有很大关系。所以在公路施工过程以及使用过程中进行健康检测是非常有必要的。现在的公路一般分三层进行施工,分为底基层、普通层和沥青层,在施工过程中埋入温度以及应变传感器可以及时得到温度以及应变的变化情况,对公路质量进行实时监控。详细了解施工材料的特点以及影响施工质量的因素。3.3 传感器设计方案:由于公路施工过程中条件比较恶劣,主要问题有以下几点:
25、1. 在沥青层铺设过程中温度可达160。2. 在施工过程中,每层受到的压力达20t 以上。3. 由于沥青层随着环境温度变化,其强度变化明显。传感器需要能真实反映沥青层应变。所以传感器在埋入过程中的成活率是最关键的问题。首先为了解决高温的问题,传感器本身采用不锈钢材料封装,尾纤采用抗高温铠装光缆。为了使传感器在强压力下仍然能继续工作,并且和沥青层比较好的配合,能真实反映沥青层挠度,设计传感器外形的时候可以采用增加沥青层与传感器的接触面积。这样,在城市交通要道以及高速公路监测点埋入传感器,组建公路监测系统,统一监控。在数据处理方面进行研究,除了能监测公路健康状况,还可实现车流量统计,对公路上超速超
26、载情况进行监测等功能。第4章对霍尔传感器的设计等离子自动高低调节器是切割机中必不可少的配套设备,广泛应用于大型装备制造、造船和切割等领域,其主要功能是保证切割割炬与被切割工件保持最佳切割距离,消除由被切割工件的不平度变化引起的加工精度误差。切割机在工作过程中不能准确获取切割割炬与钢板的距离,这就必然影响钢板的切割质量。切割的弧电流强光会给操作人员造成视觉疲劳。因此,给出了一种基于霍尔传感器的设计方案,保证切割过程中割缝宽度均匀,切割精度提高。 该设计方案利用霍尔效应原理产生随磁场变化而产生变化的电压,把变化的电压送到自动高低调节器,控制割炬的上升与下降,形成一个闭环的自动高低调节系统,如图1所
27、示。该闭环自动控制系统由霍尔传感器、自检器、高频滤波器、运算放大器、比较器、断弧提升器、模拟开关手动自动转换器、光电耦合器、三态门互锁器、电机驱动器以及机械丝杆传递定位系统组成。图2所示是系统控制电路图,从而能在切割过程中实时控制割炬与钢板的距离,有效保证钢板的切割质量。1.霍尔传感器将一块导体板置于磁场,使磁场的磁感应强度B的方向与板垂直,当导体板中流经一定电流时,垂直于磁场和电流方向的导体板的横向两侧会产生一定的电势差,这一现象称为霍尔效应。霍尔传感器是根据该原理制成的。图3是一个霍尔传感器,它共有4个接线端,分别为接地、+5V,-5V和电压输出,水电缆通过中间空心圆。等离子发生器起弧后,
28、霍尔传感器采集割炬与钢板之间的电流,水电缆中的电流穿过霍尔传感器,在其周围产生恒定磁场。向霍尔传感器预先施加一恒压,产生一恒定电流,霍尔传感器则输出霍尔电压。如果切割电流有微小变化,则产生变化的磁场,而输出的霍尔电压也是变化的,这样就把切割中的变化电流转化为变化电压,输出的霍尔电压包含有干扰信号,其高频信号的范围较宽,这就需对信号电压进行高频滤波,从而获取有用信号,再将其信号送至等离子自动高低调节器。以运算放大器C1的引脚1的输出电压作为自检电压,并通过调节VR1改变其输出电压,也可以模拟霍尔传感器输出电压。2高频滤波电路高频滤波电路由C1,L1,R1组成。由于高频信号经LM324运算放大器后
29、,还有部分杂散的高频信号没有滤除,电容C1用于滤除高频信号,而电感L1阻碍高频信号,只允许被检波的低频解调信号通过,这样在负载R1上就建立了微弱的电压信号。3.差分运算放大器运算差分放大器采用LM324。R1上的电压输入B1的引脚3,引脚3缓冲输出,用于隔离信号源,提高负载驱动能力。D2和D3二极管具有箝位作用,正向导通,信号电压被耦合至R2,R2上的电压随R1变化,具有电压跟随器的作用,R2的电压输入至后续B2的12引脚,14引脚和8引脚分别输出电压V14和V8。采用双端输入、单端输出放大信号,将B3的8引脚和B2的14引脚的输出信号输入至差分放大器B4的5引脚和6引脚,由B4的7引脚输出放
30、大后的信号。4.比较器控制系统中的比较器将差分运算放大器B4输出的电压施加至LM339比较器的E3和E4的5引脚和6引脚,而4引脚和7引脚被二极管D5箝位于03V。当差分运算放大器输出的电压落在5引脚和6引脚中,即输出电压比E3的4引脚电压低,而高于E4的7引脚,比较放大器的E3的2引脚和E4的1引脚无电压输出。这时割炬与钢板的距离保持静止,发光二极管D19和D20不亮。当电压高于E3的4引脚电压,比较器E3的2引脚输出高电平,D19点亮;当电压低于E4的7引脚,比较器1引脚输出高电平,D20点亮,从而指示割炬的升高或降低。调节VR3电位器中点电压,改变E4的4引脚和7引脚电压,使其始终箝位于
31、03V,实际上就是改变割炬离钢板的实际距离。由图2看出,当割炬离钢板时,霍尔传感器和B4都输出低电压,甚至低于E2的8引脚电压。使E2的14引脚输出低电平,从而控制M1模拟开关的12引脚和6引脚,M1变为开路状态。比较器信号无法通过,割炬保持静止。5.断弧提升器起弧后,霍尔传感器产生的电压通过D1送至E1的11引脚,由于E1的10引脚的发光二极管被箝位于2V,所以当霍尔传感器起弧后输出电压低于2V时就为断弧,处于断弧状态时E1的11引脚电压比10引脚电压低,13引脚输出低电平,该下降的低电平通过微分电路C2和R17产生下降的负向微分信号来触发NE555单稳态2引脚。NE555在电源打开瞬间产生
32、一个控制模拟开关的输出电压,选通模拟开关,这样M1的脉冲能够顺利通过引脚,使割矩产生提升动作,从而为自动定位作好准备。即使在数控机切割爬坡过程中,突然断弧。割炬也会顺速提升,割炬避免与钢板碰撞,从而保护割炬。6.模拟开关手动自动转换器模拟开关是由两片CD4066集成电路组成,用于控制手动和自动调节割矩高低。自动状态下,K3处于自动档位,控制M2的6引脚和12引脚来选通M2,使上升信号和下降信号顺利通过M2模拟开关,发光二极管D21可指示自动和手动状态,D21点亮时表示自动状态,反之为手动状态。也可通过手动调节SBl和SB2,以实现割矩高低调节。7.定位起弧电路自动定位时,K3处于自动状态,按下
33、SB3按钮,触发单稳态556器件C1的6引脚,其5引脚输出的高电平通过D28加到M1的5引脚,选通模拟开关M1的3引脚和4引脚,这时F1器件的9引脚输出振荡方波加到M1的3引脚。由于K3处于自动状态,M2的6引脚和12引脚处于高电平,振荡方波通过M2传输给光电耦合驱动电机电路,从而驱动直流电机正转。通过丝杠带动割炬向下运动,割炬碰到钢板,钢板顶起割炬,直到割炬触头碰到微动开关L1。L1微动开关闭合,触发单稳态延时电路G2的8引脚,9引脚输出阶跃上升信号,可迅速输入到G1的2引脚复位端,使5引脚停止输出高电平,以终止割炬继续下降。该信号同时通过D29加到模拟开关M1的13引脚,以选通M1的1引脚
34、和2引脚,这时G2的9引脚输m的振荡方波加到M1的1引脚,由于K3处于自动状态,M2的11引脚和10引脚处于选通状态,振荡方波通过M2的11引脚和10引脚,传输到光电耦合驱动电机电路,从而驱动直流电机反转,G2的9引脚延时单稳时间或割炬上升定位时间,或直流电动机反转提升割炬时间。定位后,G2触发单稳态电路H器件555的2引脚,H通过R31和C13时间常数的积分延时,3引脚输出一个脉冲方波,通过D29和光耦,使继电器上电,常开触点闭合,启动起弧开关,传送至等离子发生器,使得强大的电流击穿钢板,起弧成功。霍尔传感器采样起弧信号,输出电压,传送至B1的3引脚,使B1的1引脚输出变化的电压,从而实现调
35、节。8.可变占空比产生器手动和自动振荡器组成可变占空比发生器,其原理是由F1与R40、R41、VR5、D32、D33、C16组成无稳态多谐振荡器。D32、D33分别是充电和放电回路的导通管。调节VR5不会影响振荡周期T,但可改变占空系数,即改变脉冲宽度,也就是改变电机的旋转速度和割炬的上升速度和下降速度。9.光电耦合与电机驱动电路比较电路的高低调节信号通过光耦VLC1和VLC3传送至功率驱动电路,使得电机驱动电路与模拟开关电路光电隔离,这样可减少模拟开关电路的干扰。光电耦合与电机驱动电路如图4。当上升信号通过VLC1时。D36的发光二极管导通发亮,并在R45上建立电压。该电压加在三态门S1的2
36、引脚和三态门S4的12引脚端,与此同时,由于VLC3无信号,D37截止,在R47上无电压,该低电平信号通过S2,输出给S1控制端,S1三态门选通。S1导通的同时,选通的S4输出信号加到S3三态门控制端,封锁S3三态门导通。当下降信号通过VLC3时,D37导通,并在R47上建立电压,该电压加到S3的9引脚和S2的5引脚。与此同时,由于VLC1无信号,D36截止,R45上无电压,该低电平信号通过S4,输出给S3的控制端,S3三态门选通;在S2导通的同时,选通的S2输出信号加到S1的三态门控制端,封锁S1。当S1、S2、S4选通时,V1、V5、V6、V4、V10导通;V2、V7、V3、V8、V9截止
37、。由于V6和V10导通,整流的直流110V电压直接加在电机两端,电机正转,电容探头提升;当S2、S3、S4选通时,V2、V7、V3、V8、V9导通;V1、V5、V6、V4、V10截止,由于V9和V7导通,整流的直流110V电压直接加在电机两端,电机反转,电容探头下降。该电路受外界电磁干扰或者误操作,同时按动“上升”和“下降”按钮,可能导致VLC1和VLC2同时选通,但由于74LS125三态门具有保护作用,只允许上升或下降信号通过,电路具有互锁性,可避免烧坏后续驱动管。当电机电流超过V6、V7、或V9、V10驱动管额定电流时,驱动管可能被烧坏。因此,采用74LS125三态门互锁,并在V7和V10
38、发射极增加采样电阻。当采样电压超过光耦导通电压,光耦输出将调高的信号电压短路,使信号电压不能通过VLC1或VLC2,这样就保护了驱动管。 割炬定位结构系统图割炬定位机械结构是由霍尔传感器、水电缆、微动开关、触头、上夹紧盘、割炬夹、压缩弹簧、下夹紧盘、信号线、丝杆、直流电机组成。上夹紧盘、下夹紧盘和压缩弹簧夹紧割炬,割炬穿过割炬夹圆孔。割炬夹圆孔直径比割炬直径稍大一些,这样可在夹圆孔中上下活动。由于弹簧和重力的作用,割炬平稳垂直地放在割炬夹圆盘上,水电缆穿过霍尔传感器,霍尔传感器采集切割变化的电流,如图5所示。割炬定位时向下运动,割炬碰到钢板后,钢板顶起割炬,这时割炬与割炬夹产生相对运动,弹簧被
39、压缩,直到割炬触头碰到微动开关L1。L1闭合产生的触发信号通过信号线传给自动高低调节器,通过触发单稳延时电路,产生割炬上升定位时间,也是直流电动机反转提升割炬时间。由于割炬的提升,压缩弹簧逐渐恢复,如果事先通过自动高低调节器设定割炬提升时间常数,从而确定割炬提升后割炬与钢板的距离,获到割炬与钢板的最佳起弧距离。系统使用前应进行电路自检。首先打开电源开关,这时电机提升,D36点亮,说明D单稳态3引脚输出高电平;按下SB1和SB2,割炬上升或下降,说明F1和F2振荡器和功率驱动正常:自动手动开关K3置于自动状态位,按下SB3按钮,D36先点亮,瞬间熄灭后,D37点亮,接着熄灭,说明G1和G2定位系
40、统正常;K1和K2分别打在1和2位置,调节VR1电位器,如果三位半板表有电压变化指示,说明运算放大器C1和B正常;板表测到一个电压值,再左右调节VR3电位器,如果D19和D20交替点亮,说明比较器E正常的。K1打在1位置,K2打在2位置,K3在手动位置,启动起弧测量。如果板表测量值在3V和8V之间,将K2设在3位置,并调节VR3,使电压介于3V和8V之间,然后把K3打在自动位置,就可以测量。根据实际情况霍尔传感器可选型为:40A4V,60A4V,80A4V,100A4V,120A/4V,160A4V,200A4V,300A4V。霍尔传感器与高低调节器之间连接,应使用屏蔽电缆,屏蔽线接地,免等离
41、子起弧时,空间的强大电磁干扰把霍尔传感器里面的电路击穿而损坏。 霍尔传感器应用到数控切割中是等离子切割机一种新的调节方法。这种方法不但切割后工件质量好,精度达到要求,同时还减轻了操作者的劳动强度。该系统设计不但可用于常规的套料切割,还可以用于水下套料切割,省时、省力、自动化程度高,安全可靠,通过多年的实际应用,使用效果良好。参考文献:1姜培刚编 机电一体化系统设计 机械工业出版社(2004年9月版)2黄筱调等编 机电一体化技术基础及应用 机械工业出版社(第一版)3. 赵松年、张奇鹏主编机电一体化系统设计北京:机械工业出版社4. 张建民机电一体化原理与应用北京:国防工业出版社5. 魏俊民机电一体化系统设计北京:中国防织出版社6. 周祖德机电一体化控制技术与系统华中理工大学出版社7. 胡泓,姚伯威主编机电一体化原理及应用北京:国防工业出版社8. 梁景凯主编机电一体化技术与系统北京:机械工业出版社9 华东纺织工学院主编 机床设计图册 上海科学技术出版社