无机合成PPT-第18章 纳米粒子与材料的制备化学课件.ppt

上传人:小飞机 文档编号:3916360 上传时间:2023-03-27 格式:PPT 页数:26 大小:1.10MB
返回 下载 相关 举报
无机合成PPT-第18章 纳米粒子与材料的制备化学课件.ppt_第1页
第1页 / 共26页
无机合成PPT-第18章 纳米粒子与材料的制备化学课件.ppt_第2页
第2页 / 共26页
无机合成PPT-第18章 纳米粒子与材料的制备化学课件.ppt_第3页
第3页 / 共26页
无机合成PPT-第18章 纳米粒子与材料的制备化学课件.ppt_第4页
第4页 / 共26页
无机合成PPT-第18章 纳米粒子与材料的制备化学课件.ppt_第5页
第5页 / 共26页
点击查看更多>>
资源描述

《无机合成PPT-第18章 纳米粒子与材料的制备化学课件.ppt》由会员分享,可在线阅读,更多相关《无机合成PPT-第18章 纳米粒子与材料的制备化学课件.ppt(26页珍藏版)》请在三一办公上搜索。

1、第十八章 纳米粒子与材料的制备化学,纳米材料的主要形式,纳米粒子,纳米线,纳米带,纳米管,纳米膜,纳米固体材料,纳米材料分类,纳米材料大致可分为纳米粉末材料、一维纳米材料、纳米薄膜材料、纳米块体材料等,纳米粉末:又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。纳米纤维:指直径为纳米尺度而长度较大的线状材料。包括:纳米管、纳米线、纳米带等 纳米膜:纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。纳米块体:是将纳米粉末高压成型或控制金属液体结晶而得到

2、的纳米晶粒材料。,纳米粒子合成概述,自然界中的纳米粒子尘埃、烟20世纪初人们已开始用蒸发法制备金属及其氧化物的纳米粒子20世纪中期人们探索机械粉碎法使物质粒子细化(极限为数微米)近几十年来机械粉碎法可以使微粒小到0.5微米左右多种化学方法(表面活性剂的应用)和物理方法的开发近十年来各种高技术,如激光技术、等离子体技术等的应用,使得制备粒度均匀、高纯、超细、分散性好的纳米粒子成为可能,但问题是如何规模化,纳米粒子合成方法分类,纳米粒子合成的物理方法粉碎法,“粉碎”一词是指块体物料粒子由大变小过程的总称,它包括“破碎”和“粉磨”。前者是由大料块变成小料块的过程,后者是由小料块变成粉末的过程。粉碎过

3、程就是在粉碎力的作用下固体物料或粒子发生形变进而破裂的过程。当粉碎力足够大时,力的作用又很迅猛,物料块或粒子之间瞬间产生的引力大大超过了物料的机械强度。因而物料发生了破碎。粉碎作用力的类型主要有如右图所示几种。可见物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。常借助的外力有机械力、流能力、化学能、声能、热能等。主要由湿法粉碎和干法粉碎两种。,粉碎力作用形式,纳米粒子合成的物理方法粉碎法,一般的粉碎作用力都是几种力的组合,如球磨机和振动磨是磨碎和冲击粉碎的组合;雷蒙磨是压碎、剪碎和磨碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。物料被粉碎时常常会导致物质结构及表面物理化学性质发生变化,主要表

4、现在:1、粒子结构变化,如表面结构自发的重组,形成非晶态结构或重结晶。2、粒子表面的物理化学性质变化,如电性、吸附、分散与团聚等性质。3、受反复应力使局部发生化学反应,导致物料中化学组成发生变化。,纳米粒子合成的物理方法构筑法,构筑法是由小极限原子或分子的集合体人工合成超微粒子,纳米粒子合成的化学方法,化学法主要是“自下而上”的方法,即是通过适当的化学反应(化学反应中物质之间的原子必然进行组排,这种过程决定物质的存在状态),包括液相、气相和固相反应,从分子、原子出发制备纳米颗粒物质。化学法包括气相反应法和液相反应法。,气相反应法可分为:气相分解法、气相合成法及气固反应法等液相反应法可分为:沉淀

5、法、溶剂热法、溶胶凝胶法、反相胶束法等,纳米粒子的气相反应法合成气相合成法,通常是利用两种以上物质之间的气相化学反应,在高温下合成为相应的化合物,再经过快速冷凝,从而制备各类物质的纳米粒子。一般的反应形式为:,液相反应法合成纳米粒子沉淀法,沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合溶液中加入适当的沉淀剂制备纳米粒子的前驱体沉淀物,再将此沉淀物进行干燥或煅烧,从而制得相应得纳米粒子。存在于溶液中的离子A和B,当它们的离子浓度积超过其溶度积A+.B-时,A和B之间就开始结合,进而形成晶核。由晶核生长和在重力的作用下发生沉降,形成沉淀物。一般而言,当颗粒粒径成为1微米以上时就形成沉淀。

6、沉淀物的粒径取决于核形成与核成长的相对速度。即核形成速度低于核成长,那么生成的颗粒数就少,单个颗粒的粒径就变大。,沉淀法主要分为:直接沉淀法、共沉淀法、均匀沉淀法、水解沉淀法、化合物沉淀法等,液相反应法合成纳米粒子沉淀法,在含有多种阳离子的溶液中加入沉淀剂后,所有离子完全沉淀的方法称为共沉淀法。根据沉淀的类型可分为单相共沉淀和混合共沉淀。,例如:1.在Ba,Ti的硝酸盐溶液中加入草酸沉淀剂后,形成了单相化合物BaTiO(C2H4)24H2O沉淀。经高温分解,可制得BaTiO3的纳米粒子。2.将Y2O3用盐酸溶解得到YCl3,然后将ZrOCl28H2O和YCl3配成一定浓度的混合溶液,在其中加入

7、NH4OH后便有Zr(OH)4和Y(OH)3的沉淀形成,经洗涤、脱水、煅烧可制得ZrO2(Y2O3)的纳米粒子。,沉淀法合成纳米粒子均匀沉淀法,在金属盐溶液中加入沉淀剂溶液时,即使沉淀剂的含量很低,不断搅拌,沉淀剂浓度在局部溶液中也会变得很高。均匀沉淀法是不外加沉淀剂,而是使沉淀剂在溶液内缓慢地生成,消除了沉淀剂的局部不均匀性。,例如:将尿素水溶液加热到70左右,就会发生如下水解反应:(NH2)2CO+3H2O 2NH4OH+CO2 该反应在内部生成了沉淀剂NH4OH。,沉淀法合成纳米粒子水解沉淀法,众所周知,有很多化合物可用水解生成沉淀,用来制备纳米粒子。反应的产物一般是氢氧化物或水合物。因

8、为原料是水解反应的对象是金属盐和水,所以如果能高度精制金属盐,就很容易得到高纯度的纳米粒子。常用的原料有:氯化物、硫酸盐、硝酸盐、氨盐等无机盐以及金属醇盐。据此可将水解沉淀法分为无机盐水解法和金属醇盐水解法,无机盐水解法:其原理是通过配置无机盐的水合物,控制其水解条件,合成单分散性的球、立方体等形状的纳米粒子。例如对钛盐溶液的水解可以使其沉淀,合成球状的单分散形态的二氧化钛纳米粒子。通过水解三价铁盐溶液,可以得Fe2O3纳米粒子。,液相反应法合成纳米粒子水热法,水热过程是指在高温、高压下在水、水溶液或蒸气等流体中所进行有关化学反应的总称。水热条件能加速离子反应和促进水解反应。在常温常压下一些从

9、热力学分析看可以进行的反应,往往因反应速度极慢,以至于在实际上没有价值。但在水热条件下却可能使反应得以实现。水热反应有以下几种类型:1、水热氧化:mM+nH2O MmOn+H2 2、水热沉淀:KF+MnCl2 KMnF2 3、水热合成:FeTiO3+KOH K2On.TiO2 4、水热还原:MexOy+yH2 xMe+yH2O 5、水热分解:ZrSiO4+NaOH ZrO2+Na2SiO3 6、水热结晶:Al(OH)3 Al2O3.H2O,液相反应法合成纳米粒子溶胶凝胶法,其基本原理是:将金属醇盐或无机盐经水解直接形成溶胶或经解凝形成溶胶,然后使溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分,

10、最后得到无机材料。溶胶凝胶法包括以下过程:,纳米薄膜制备方法概述,纳米薄膜可分为:单分子膜;由纳米粒子组成(或堆砌而成)的薄膜;纳米粒子间有较多空隙或无序原子或另一种材料的薄膜等。LB技术 自组装技术 物理气相沉积 MBE技术 化学气相沉积,LangmuirBlodgett技术,自组装技术,物理气相沉积技术,物理气相沉积(PVD)方法作为一类常规的薄膜制备手段被广泛的应用于纳米薄膜的制备,包括蒸镀、电子束蒸镀、溅射等。,化学气相沉积技术,化学气相沉积(CVD)方法目前被广泛的应用于纳米薄膜材料的制备,主要用于制备半导体、氧化物、氮化物、碳化物纳米薄膜。CVD法可分为常压CVD;低压CVD;热C

11、VD;等离子CVD;间隙CVD;激光CVD;超声CVD等等。,溶胶凝胶法,溶胶凝胶法是从金属的有机或无机化合物的溶液出发,在溶液中通过化合物的加水分解、聚合,把溶液制成溶有金属氧化物微粒子的溶胶液,进一步发生反应发生凝胶化,再把凝胶加热,可制成非晶体玻璃、多晶体陶瓷等通过旋涂,可制成纳米薄膜。,PVD、CVD、SolGel方法比较,模板法合成纳米材料,大多数纳米材料的化学合成方法涉及到原子、离子或分子自气相或液相析出的凝聚反应,涉及到从分散的原子或分子逐渐聚集、长大的生长过程。以液相沉淀反应为例,颗粒的形成一般可以分为两个阶段。第一阶段是晶核的形成;第二阶段是晶核生长。颗粒的微结构、尺寸及其分

12、布由反应体系的本质及反应的动力学过程所决定。可想而知,要制备粒径均一、结构相同的纳米颗粒的难度有多大。这相当于让烧杯中天文数字的原子同时形成大小一样的晶核,并同时长大到相同的尺寸。而且还要考虑颗粒间的团聚问题,因为团聚是使纳米颗粒的表面能降低的自发过程。因此,为了得到尺寸可控、无团聚的纳米颗粒,必须找到“窍门”,来有效地干预化学反应的进程。,模板法合成纳米材料,模板合成技术便是化学家们找到的“窍门”。模板合成的原理实际上非常简单。设想存在一个纳米尺寸的笼子(纳米尺寸的反应器),让原子的成核和生长在该“纳米反应器”中进行。在反应充分进行后,“纳米反应器”的大小和形状就决定了作为产物的纳米材料的尺寸和形状。无数多个“纳米反应器”的集合就是模板合成技术中的“模板”。,模板的分类,模板大致可以分为两类 软模板 和 硬模板 硬模板有多孔氧化铝、介孔沸石、蛋白、MCM41、纳米管、多孔Si模板、金属模板以及经过特殊处理的多孔高分子薄膜等。软模板则常常是由表面活性剂分子聚集而成的胶团、反胶团、囊泡等。二者的共性是都能提供一个有限大小的反应空间,区别在于前者提供的是静态的孔道,物质只能从开口处进入孔道内部,而后者提供的则是处于动态平衡的空腔,物质可以透过腔壁扩散进出。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号