第2部分一元线回归课件.ppt

上传人:小飞机 文档编号:3917793 上传时间:2023-03-27 格式:PPT 页数:57 大小:634.50KB
返回 下载 相关 举报
第2部分一元线回归课件.ppt_第1页
第1页 / 共57页
第2部分一元线回归课件.ppt_第2页
第2页 / 共57页
第2部分一元线回归课件.ppt_第3页
第3页 / 共57页
第2部分一元线回归课件.ppt_第4页
第4页 / 共57页
第2部分一元线回归课件.ppt_第5页
第5页 / 共57页
点击查看更多>>
资源描述

《第2部分一元线回归课件.ppt》由会员分享,可在线阅读,更多相关《第2部分一元线回归课件.ppt(57页珍藏版)》请在三一办公上搜索。

1、第2章 一元线性回归,2.1 一元线性回归模型2.2 参数 的估计2.3 最小二乘估计的性质2.4 回归方程的显著性检验2.5 残差分析2.6 回归系数的区间估计2.7 预测和控制2.8 本章小结与评注,2.1 一元线性回归模型,例2.1 表2.1列出了15起火灾事故的损失及火灾发生地与最近的消防站的距离。,表2.1火灾损失表,2.1 一元线性回归模型,例2.2 全国人均消费金额记作y(元);人均国民收入记为x(元),表2.2 人均国民收入表,2.1 一元线性回归模型,2.1 一元线性回归模型,一元线性回归模型,此时回归方程为,2.1 一元线性回归模型,样本模型,回归方程,样本观测值(x1,y

2、1),(x2,y2),(xn,yn),经验回归方程,2.2 参数0、1的估计,一、普通最小二乘估计(Ordinary Least Square Estimation,简记为OLSE),最小二乘法就是寻找参数0、1的估计值使离差平方和达极小,称为yi的回归拟合值,简称回归值或拟合值,称为yi的残差,2.2 参数0、1的估计,2.2 参数0、1的估计,经整理后,得正规方程组,2.2 参数0、1的估计,得OLSE 为,记,2.2 参数 的估计,续例2.1,回归方程,2.2 参数 的估计,二、最大似然估计,连续型:是样本的联合密度函数:离散型:是样本的联合概率函数。似然函数并不局限于独立同分布的样本。

3、,似然函数,在假设iN(0,2)时,由(2.10)式知yi服从如下正态分布:,2.2 参数0、1的估计,二、最大似然估计,y1,y2,yn的似然函数为:,对数似然函数为:,与最小二乘原理完全相同,2.3 最小二乘估计的性质,一、线性,是y1,y2,yn的线性函数:,其中用到,2.3 最小二乘估计的性质,二、无偏性,2.3 最小二乘估计的性质,三、的方差,2.3 最小二乘估计的性质,三、的方差,在正态假设下,GaussMarkov条件,2.4 回归方程的显著性检验,一、t 检验,原假设:H0:1=0对立假设:H1:10,由,当原假设H0:1=0成立时有:,2.4 回归方程的显著性检验,一、t 检

4、验,构造t 统计量,其中,2.4 回归方程的显著性检验,二、用统计软件计算,1例2.1 用Excel软件计算,什么是P 值?(P-value),P 值即显著性概率值 Significence Probability Value是当原假设为真时得到比目前的 样本更极端的样本的 概率,所谓极端就是与原假设相背离它是用此样本拒绝原假设所犯弃真错误的 真实概率,被称为观察到的(或实测的)显著性水平,双侧检验的P 值,/2,/2,t,拒绝,拒绝,H0值,临界值,计算出的样本统计量,计算出的样本统计量,临界值,1/2 P 值,1/2 P 值,左侧检验的P 值,H0值,临界值,a,样本统计量,拒绝域,抽样分

5、布,1-,置信水平,计算出的样本统计量,P 值,右侧检验的P 值,H0值,临界值,a,拒绝域,抽样分布,1-,置信水平,计算出的样本统计量,P 值,利用 P 值进行检验的决策准则,若p-值,不能拒绝 H0若p-值,拒绝 H0双侧检验p-值=2单侧检验p-值,2.4 回归方程的显著性检验,二、用统计软件计算,2.例2.1用SPSS软件计算,2.4 回归方程的显著性检验,二、用统计软件计算,2.用SPSS软件计算,2.4 回归方程的显著性检验,三、F检验,平方和分解式,SST=SSR+SSE,构造F检验统计量,2.4 回归方程的显著性检验,三、F检验,一元线性回归方差分析表,2.4 回归方程的显著

6、性检验,四、相关系数的显著性检验,2.4 回归方程的显著性检验,四、相关系数的显著性检验,2.4 回归方程的显著性检验,四、相关系数的显著性检验,附表1 相关系数=0的临界值表,2.4 回归方程的显著性检验,四、相关系数的显著性检验,用SPSS软件做相关系数的显著性检验,2.4 回归方程的显著性检验,四、相关系数的显著性检验,两变量间相关程度的强弱分为以下几个等级:当|r|0.8时,视为高度相关;当0.5|r|0.8时,视为中度相关;当0.3|r|0.5时,视为低度相关;当|r|0.3时,表明两个变量之间的相关程度极弱,在实际应用中可视为不相关。,2.4 回归方程的显著性检验,五、三种检验的关

7、系,H0:b=0,H0:r=0,H0:回归无效,2.4 回归方程的显著性检验,六、样本决定系数,可以证明,2.5 残差分析,一、残差概念与残差图,残差,误差项,残差ei是误差项ei的估计值。,2.5 残差分析,一、残差概念与残差图,2.5 残差分析,一、残差概念与残差图,图 2.6 火灾损失数据残差图,2.5 残差分析,二、残差的性质,性质1 E(ei)=0,证明:,2.5 残差分析,二、残差的性质,性质2,其中,称为杠杆值,2.5 残差分析,二、残差的性质,2.5 残差分析,二、残差的性质,性质3.残差满足约束条件:,2.5 残差分析,三、改进的残差,标准化残差,学生化残差,2.6 回归系数

8、的区间估计,等价于,1的1-置信区间,2.7 预测和控制,一、单值预测,2.7 预测和控制,二、区间预测,找一个区间(T1,T2),使得,需要首先求出其估计值,的分布,1因变量新值的区间预测,以下计算,的方差,从而得,1.因变量新值的区间预测,二、区间预测,记,于是有,则,二、区间预测,1.因变量新值的区间预测,y0的置信概率为1-的置信区间为,y0的置信度为95%的置信区间近似为,二、区间预测,1.因变量新值的区间预测,得E(y0)的1-的置信区间为,E(y0)=0+1x0是常数,二、区间预测,1.因变量新值的区间预测,对例2.1的火灾损失数据,假设保险公司希望预测一个距最近的消防队x0=3

9、.5公里的居民住宅失火的损失,点估计值,95%区间估计 单个新值:(22.32,32.67)平均值E(y0):(26.19,28.80),的95%的近似置信区间为,=(27.50-22.316,27.50+22.316)=(22.87,32.13),二、区间预测,计算,给定y的预期范围(T1,T2),如何控制自变量x的值才能以1-的概率保证,用近似的预测区间来确定x。如果=0.05,则要求,把,带入,二、控制问题,2.8 本章小结与评注,一、一元线性回归模型从建模到应用的全过程例2.2 全国人均消费金额记作y(元);人均国民收入记为x(元),表2.2 人均国民收入表,2.8 本章小结与评注,二、有关回归假设检验问题 1973年Anscombe构造了四组数据,这四组数据所建的回归方程是相同的,决定系数,F统计量也都相同,且均通过显著性检验。,2.8 本章小结与评注,谢谢你的阅读,知识就是财富丰富你的人生,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号