《论文(设计)青枯菌基于c1 细胞色素信号肽序列的PCR 特异性检测.doc》由会员分享,可在线阅读,更多相关《论文(设计)青枯菌基于c1 细胞色素信号肽序列的PCR 特异性检测.doc(10页珍藏版)》请在三一办公上搜索。
1、青枯菌基于c1细胞色素信号肽序列的PCR特异性检测KANG, MAN JUNG1, MI HEE LEE1, JAE KYUNG SHIM1, SANG TAE SEO2, ROSEMARY SHRESTHA3, MIN SEOK CHO1, JANG HO HAHN1, AND DONG SUK PARK1*1National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-707, Korea2Korean Forest Research Institute, Seou
2、l 130-172, Korea3Central Department of Botany, Tribhuvan University, Kirtipur, Kathmandu, NepalReceived: March 13, 2007 Accepted: May 25, 2007摘要:本文运用PCR方法检测可造成多种农作物细菌性枯萎病的青枯菌。根据青枯菌的c1细胞色素信号肽序列设计了一对引物对RALSF和RALSR用于青枯菌的特异性检测,结果表明,从13个来源于不同国家青枯菌菌株中均扩增到一条932 bp的片断,而在其他21个菌株分别为Ralstonia,Burkholderia, Xan
3、thomonas, and Fusarium oxysporum f. sp. dianthi.未扩增到条带。青枯菌的c1细胞色素信号肽序列的特异性通过斑点杂交方法得到了进一步的验证。而且,这对引物能够检测人工接种青枯病病菌的土壤与番茄植株。因此,目前研究表明这对引物能够有效地用于土壤中与寄主植物体内的青枯菌检测。关键词:青枯菌,PCR, 细菌性枯萎病,c1细胞色素信号肽序列,检测,诊断青枯菌是一种重要的,广泛分布的茄科细菌性病害,在热带、亚热带及温带地区均有分布。它能够侵染200多个种,50个属以上的植物11。最近,欧洲许多地方的马铃薯正在遭受青枯病的危害13, 28,因此,迫切需要有效的诊
4、断方法与特异性检测手段。根据对碳源的利用青枯菌可分为5个专化型9, 10,根据寄主范围它分为6个小种4, 21。土壤中青枯菌常用的检测方法是将土壤悬浮液涂布在特定的培养基上7, 8,但是,涂板技术在不同土样之同存在很大的变化,供试的土壤中含有大量的微生物,会盖过或抑制青枯菌的生长22, 29。同样,虽然血清学方法也能运用于植物与土壤青枯菌的检测且能够增加敏感性,但也存在增加土壤悬浮液中腐生细菌数量的风险,在ELISA分析中会导致假阳性反应,特别是当使用也多克隆抗体的时候5, 22。因此,几种基于PCR方法已被运用于检测青枯菌的方法。Seal等 27提出利用 16S rDNA序列检测青枯菌,Bo
5、udazin等 3根据16S rDNA序列的设计了几对引物并进行了大量的菌株试验,证明这些引物可以检测到种的水平。然而,上述两种方法在检测青枯菌方面具有很大的局限限性,主是要由于引物的高度保守性,有可能产生阳性结果3, 30, 32。DNA标记的PCR技术运用于青枯菌检测与鉴定具有的敏感性和快速的特点6, 12, 16, 25, 26, 32。此外, Weller等 32发展了一种荧光PCR标记(TaqMan) 分析,证明它对青枯菌的检测具有敏感性,但是该方法与其它PCR方法相比较存在一些缺陷,如菌检测的菌株量大,需要很大的花费与时间。然而,已报道文献中的大多数用于青枯菌检测的引物缺少特异性,
6、因此,本研究基于c1细胞色素信号肽序列设计了只对青枯菌高度保守的序列,并对土壤中及番茄植株样品中的青枯菌进行特异性与敏感性检测。1. 材料与方法1.1培养条件与DNA提取细菌与真菌菌株来自韩国农业菌种保藏中心(KACC)、比利时菌种中心(BCCM)、德国菌种保藏中心(DSMZ)和美国菌种藏中心(ATCC)。供试菌株见表1 。细菌菌株与香石竹尖孢镰刀菌的培养见微生物培养基手册,微生物的总DNA提取使用QIAGEN生产的DNA提取试剂盒。表1 供试的细菌菌株与真菌菌株Table 1. List of bacterial and fungal isolates used in this study.
7、No.IsolatesRaceBiovarSourceaGeographical origin1Ralstonia solanasearum11LMG 2299U.S.A.2Ralstonia solanasearum13LMG 2305Egypt3Ralstonia solanasearum1-KACC 11179Japan4Ralstonia solanasearum1-KACC 11178Japan5Ralstonia solanasearum13KACC 11171Republic of Korea6Ralstonia solanasearum13KACC 11166Republic
8、of Korea7Ralstonia solanasearum32KACC 10716Republic of Korea8Ralstonia solanasearum14KACC 10704Republic of Korea9Ralstonia solanasearum13KACC 10709Republic of Korea10Ralstonia solanasearum13KACC 10710Republic of Korea11Ralstonia solanasearum32KACC 10722Republic of Korea12Ralstonia solanasearum13KACC
9、 10714Republic of Korea13Ralstonia solanasearum13KACC 10666Republic of Korea14Ralstonia mannitolilyticaLMG 6866United Kingdom15Ralstonia pickettiiLMG 5942U.S.A.16Ralstonia syzygiiDSM 11197China17Burkholderia cenocepaciaLMG 16656United Kingdom18Burkholderia gladioli pv. gladioliLMG 2216U.S.A.19Pseudo
10、monas syringae pv. tomatoLMG 5093United Kingdom20Pseudomonas syringae pv. ulmiLMG 2349Yugoslavia21Pseudomonas savastanoi pv. phaseolicolaLMG 5008Sweden22Pseudomonas libanensisKACC 10809-23Pseudomonas fuscovaginaeLMG 2158Japan24Pseudomonas coronafaciensLMG 5060United Kingdom25Pseudomonas citronelloli
11、sLMG 18378U.S.A.26Pseudomonas oryzihabitansLMG 7040Japan27Pseudomonas mucidolensLMG 2223U.S.A.28Pseudomonas graminisDSM 11363Germany29Pseudomonas jesseniiATCC 700870-30Pseudomonas lundensisLMG 13517-31Pseudomonas taetrolensLMG 2336-32Pseudomonas putidaKACC 10272-33Xanthomonas axonopodis pv. citriKAC
12、C 10443Republic of Korea34Fusarium oxysporum f.sp. dianthiATCC11939-KACC, Korean Agricultural Culture Collection, Korea (http:/kacc.rda.go.kr); ATCC, American Type Culture Collection, U.S.A.; LMG, Belgian Coordinated Collections of Microorganisms (BCCM), Belgium; DSM, Deutsche Sammlung von Mikroorga
13、nismen und Zellkulturen GmbH (DSMZ),Germany.b-, Unknown.1.2引物设计与PCR扩增根据青枯菌标准菌株GMI1000(GenBank登录号No. NP_518317; GI: 17544915)的c1细胞色素信号肽序列设计了引物对,前引物RALSF(5-GCTCAAGGCATTCGTGTGGC-3)和后引物RALSR(5-GTTCATAGATCCAGGCCATC-3),预计PCR的扩增产物片断为932 bp。PCR检测使用型号为PTC-225的PCR仪,所有的扩增所应体系为:每个反应含10 mM Tris-HCl, 50 mM KCl, 1
14、.5 mM MgCl2, 0.01% gelatin, 0.2 mM of dNTP, 10 pM 的引物和2个单位的Taq 酶(Promega),DNA模板约50 ng,总体积50 l。PCR扩增程序:94 预变性5 min,94 变性60 s,64 退火30 min,72 延伸60s,共25个循环,最后72 延伸10 min。取8lPCR产物用1.0%琼脂糖凝胶电泳。1.3 DNA斑点杂交(DNA Dot Blot)分析DNA斑点杂交分析用于证实c1细胞色素信号肽序列片断是否存在于其它微生物中,如青枯菌及伯克氏菌属这些供研究的微生物菌株中。因此,100ng的DNA样品被点到硝酸纤维膜上(H
15、ybond-N+nylon membrane) (Amersham Pharmacia Biotech),然后紫外灯下固定DNA 探针样品,探针样品的PCR产物来源于用随机引物标记发32PdCTP探针的青枯菌菌株LMG2299(方法依据Ladderman手册)。预杂交与杂交均在含0.75 M NaCl, 75 mM sodium citrate, 0.5% SDS, 0.1% BSA, 0.1% Ficoll, 0.1% polyvinylpyrrolidone, and50 l/ml denatured salmon sperm DNA的染交液中于65杂交18 h。杂交后用含01SDS的2x
16、SSC洗液于室温下洗两次,每次10min,再用含01SDS的01xSSC洗液65洗2次每次15 min。最后于-70oC下用AGFA型洗片机自动显影。1.4 PCR灵敏性测试纯培养的的青枯菌菌株LMG2299悬浮液调节浓度到A600 nm=0.2,然后用无菌蒸馏水10倍梯度稀释成10-1至10-8共8个稀释浓度。每个稀释度的菌液取5l的倍数(Five-l aliquots),菌液浓度在5108-50 CFU/ml,然后加5l已跑过电泳的PCR产物。为了测定以上稀释液的CFU值,分别涂在TTC上,每个样涂3块板14,于28oC下培养3d。以上实验均至少有2个重复。1.5 植株与土壤细菌的检测番茄
17、组织上青枯菌的直接检测是取30 l菌浓度为 5108 CFU/ml 的青枯菌菌株LMG2299的菌悬液,用无菌解剖刀1-cm-longlongitudinal incisions,以无菌水接种的植株为对照。接菌后的植株于温室培养,症状出现后在植株茎杆接近土面有萎蔫症状的处选点横切1 cm的植物组织片断后浸泡在含9 ml无菌水的密封塑料袋中,然后密封好的塑料袋在室温下振荡10 min,取水样连续稀释后于沸水热处理5 min,上清液10,000 g 离心1 min收集上清液。PCR试验中每个稀释度取5 l的上清液。同时使用TTC进行菌落计数。土样细菌的检测,青枯菌菌株LMG2299的菌悬液浓度为5
18、108 CFU/ml,取1-ml加到含9 g两次灭菌土样的50-ml圆锥瓶中,于室温下温室2 h后样品用无菌水梯度称释。按植物组织提取法收集上清液用于PCR试验。PCR扩增产物用琼脂糖凝胶电泳观察结果。2. 试验结果2.1 引物的特异性利用特异性引物RALSF和RALSR 检测青枯菌的结果与原先的设计相吻合,不同地理来源的13个青枯菌均扩增到一条932 bp DNA片断(Fig. 1)。为了检测引物的特异性,同时选用一些其他菌株进行扩增,如1株真菌菌株(Fusarium oxysporum f. sp. dianthi), 3株其他种的Ralstonia Burkholderia,Pseudo
19、monas, and Xanthomonas。然而,从这些微生物中都没有扩增到条件(Fig. 1)。此外,在相同条件下使用Perkin Elmer 9600 thermal cycler型号的PCR仪及选用不同的公司(Promega, Takara, and Toyobo)生产的Taq 酶也得到了同样的试验结果。 图1Fig. 1. PCR amplification of partial cytochrome c1 signal peptide from Ralstonia solanacearum using the species-specific RALSF and RALSR pri
20、mer set.Lane M, Size marker (1 kb plus DNA ladder; Gibco BRL); lanes 1-34 listed as in Table 1.2.2 DNA Dot-Blot Analysis斑点杂交分析目的是用于检测青枯菌的长度为932bp的c1细胞色素信号肽是否在Burkholderia, Pseudomonas, Xanthomonas, 及真菌菌株 fungus Fusarium oxysporum f. sp. dianthi.这些菌株中也具有同源性。检测结果表明,仅在所有的青枯菌菌株中出现阳性反应,而在其他供试菌株中的反应均为阴性,说
21、明c1细胞色素信号肽序列对青枯具有高度的保守性(Fig. 2),而在其它菌中可能缺失或与没有同源性。Fig. 2. DNA dot-blot analysis of cytochrome c1 signal peptide using a PCR-amplified fragment (932 bp) from Ralstonia solanacearum LMG2299.Lanes 1-13, Ralstonia solanacearum; lanes 14 to 34, corresponding to isolates numbered in Table 1.2.3 土壤与番茄植株青枯菌
22、的检测已证明引物对RALSF 和 RALSR是青枯菌的特异性引物。引物对的敏感性测定是通过番茄植株人工接种病原菌与土壤样品人工接种病原菌,结果显示从番茄植株与土壤样品中均扩增到932-bp DNA片断,且青枯菌的检测最低活体浓度为5103 CFU/ml (Fig. 3)。青枯菌种的特异性PCR引物检测表明,植株体内与土壤样品的菌的浓度只要分别不低于2104 和3104 CFU/ml 就能扩增到条带(Figs. 4A and 4B)。无菌水接菌处理的健康植株对照组样品中没有扩增到任何PCR条带。Fig. 3. Determination of the sensitivity of PCR con
23、ditions when using RALSF and RALSR primers with Ralstonia solanacearum.M, Molecular size marker (100-bp ladder, Invitrogen). Lanes 1-7, dilutions of Ralstonia solanacearum cells ranging from 5107 -50 CFU/ml.Fig. 4. PCR sensitivity assay for detection of Ralstonia solanacearum in artificially infecte
24、d tomato plants and soil.M. Molecular size marker (100-bp ladder, Invitrogen). A. PCR amplification of DNA from R. solanacearum in infected tomato plants. Lane 1, 2106; lane2, 2105; lane 3, 2104; lane 4, 2103; lane 5, 2102, and lane 6, 20 CFU/ml. B. PCR amplification of DNA from R. solanacearum in i
25、nfected soil. Lane 1,3106; lane 2, 3105; lane 3, 3104; lane 4, 3103; lane 5, 3102, and lane 6, 30 CFU/ml.3. 讨论在许多植物细菌病原上已有使用特导性引物与DNA探针进行病原的鉴定与检测15, 18-20, 23, 25,31。在青枯菌的检测方面也已有一些DNA探针与基于PCR的方法3, 25, 26,30, 32。但是,现有的大多数被认为对青枯菌具有特异性与敏感性的引物在近缘种内也可以产生阳性反应。c1细胞色素信号肽在微生物途径中发挥的作用还没有得到充分的研究。然而,最近Mehta et
26、al. 17报道c型细胞色素However, Mehta et al. 17 recently reported that c-type cytochromes are specifically required for the reduction of Fe(III) oxide in Geobacter sulfurreducens,然而,通过BLAST比较发现c1细胞色素信号肽在种水平的不同细胞间有很高的可变性(数据未发表)。青枯菌(GenBank Accession No. NP_518317, GI: 17544915) 的c1细胞色素信号肽核苷酸顺序通过BLAST比对搜索也发现在种
27、水平的不同细胞间有很高的可变性(数据未发表)。而且,根据青枯菌c1细胞色素信号肽核苷酸顺序设计的引物对RALSF 和 RALSR被证明在对所有的不同种及变种的青枯菌具有特异性,而对其他属种的病原细菌无特异性(Fig. 1)。研究结果表时,这对引物对青枯菌具有特异性可能取决于该病原菌的独特序列。而且,使用c1细胞色素信号肽序列(932 bp)作探针进行斑点杂交分析结果也表明,只在青枯菌菌株的DNA样品中有出现杂交信号,而其他病原菌则未出现。证明c1细胞色素信号肽序列对青枯菌具有保守性。已有报道来源于fliC基因片断的引物对青枯菌的检测具有特异性与敏感性,虽然它也能扩增出Pseudomonas s
28、yzygii的DNA条带 25。然而,本研究中的来源于c1细胞色素信号肽序列只对青枯菌具有特异性,而其他菌,包括R. syzygii (P. syzygii)均没有扩增到DNA条带(Fig. 1),表明RALSF 和RALSR引物对具有很大的特异性。虽然,利用特异性引物成功进行病原菌检测依赖于引物的特异性,但引物,模板,Mg2+浓度,PCR仪及DNA聚合酶的耐热性对扩增结果也可产生影响。所以在这个研究中,对所有的参数进行了优化,以确保结果的可重复性。结果表明,使用不同产家的PCR仪和Taq酶,青枯菌均可扩增到一条932-bp的片断,说明RALSF 和 RALSR这对引物对青枯菌具有很好的特异性
29、。而且,现有的结果清楚的证明RALSF 和 RALSR引物对青枯菌检测的敏感性的人为影响包括土壤,番茄茎,培养基的纯度。当所有的组织提取悬浮液直接用于PCR检测,非特异性扩增条带出现是很普遍的,势必影响检测结果。然而,使用RALSF 和 RALSR引物对所供试的样品分析,均没有假阳性出现,证明,这套引物对青枯菌具的很高的特异性,能够用于检测与诊断该病原菌。REFERENCES1. Atlas, R. M. 2004. Handbook of Microbiological Media, 3rd Ed. CRC Press.2. Bassam, B. J., G. Caetano-Anolles
30、, and P. M. Gresshoff. 1992. DNA amplification fingerprinting of bacteria. Appl. Microbiob. Biotechnol. 38: 70-76.3. Boudazin, G., A. C. Le Roux, K. Josi, P. Labarre, and B. Jouan. 1999. Design of division specific primers of Ralstonia solanacearum and application to the identification of European i
31、solates. Eur. J. Plant Pathol. 105: 373-380.4. Buddenhagen, I. and A. Kelman. 1964. Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 2: 203-230.5. Caruso, P., M. T. Gorris, M. Cambra, J. L. Palomo, J. Collar, and M. M. Lpez. 2002. Enr
32、ichment double-antibody sandwich indirect enzyme-linked immunosorbent assay that uses a specific monoclonal antibody for sensitive detection of Ralstonia solanacearum in asymptomatic potato tubers. Appl. Environ. Microbiol. 68: 3634-3638.6. Dittapongpitch, V. and S. Surat. 2003. Detection of Ralston
33、ia solanacearum in soil and weeds from commercial tomato fields using immunocapture and the polymerase chain reaction. J. Phytopathol. 151: 239-246.7. Elphinstone, J. G., J. Hennessy, J. K. Wilson, and D. E. Stead. 1996. Sensitivity of different methods for the detection of Pseudomonas solanacearum
34、(Smith) in potato tuber extracts. EPPO Bull. 26: 663-678.8. Granada, G. A. and L. Sequeira. 1983. A new selective medium for Pseudomonas solanacearum. Plant Dis. 67:1084-1088.9. Hayward, A. 1964. Characteristics of Pseudomonas solanacearum. J. Appl. Bacteriol. 27: 265-277.10. Hayward, A. C., H. M. E
35、l-Nashaar, U. Nydegger, and L. De Lindo. 1990. Variation in nitrate metabolism in biovars of Pseudomonas solanacearum. J. Appl. Bacteriol. 69: 269-280.11. Hayward, A. 1994. Systematics and phylogeny of Pseudomonas solanacearum and related bacteria, pp. 127-135. In G. L.Hartman and A. C. Hayward (eds
36、.), Bacterial Wilt: The Disease and its Causative Agent, Pseudomonas solanacearum. CAB International, Oxford, England12. Ito, S., Y. Ushijima, T. Fujii, S. Tanaka, M. Kameya-Iwaki, S. Yoshiwara, and F. Kishi. 1998. Detection of viable cells ofRalstonia solanacearum in soil using a semiselective medi
37、um and a PCR technique. J. Phytopathol. 146: 379-384.13. Janse, J. D., F. A. X. Araluppan, J. Schans, M. Wenneker, and W. Westerhuis. 1998. Experiences with bacterial brown rot Ralstonia solanacearum biovar 2, race 3, in The Netherlands, pp. 146-154. In P. Prior, C. Allen, and J. Elphinstone (eds.),
38、 Bacterial Wilt Disease - Molecular and Ecological Aspects. Springer-Verlag, Berlin, Germany.14. Kelman, A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44: 693-69515. Kim, S., H. Lim, W. Lee, I. Hwang, G. Woo, and S
39、. Ryu. 2006. PCR-based detection and molecular genotyping ofenterotoxigenic Clostridium perfringens isolates from swine diarrhea in Korea. J. Microbiol. Biotechnol. 16: 291-294.16. Lee, Y. A. and C. C. Wang. 2000. The design of specific primers for the detection of Ralstonia solanacearum in soilsamp
40、les by polymerase chain reaction. Bot. Bull. Acad. Sin. 41: 121-128.17. Mehta, T., M. V. Coppi, S. E. Childers, and D. R. Lovley. 2005. Outer membrane c-type cytochromes required for Fe(III)and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol. 71: 8634-8641.18. Park, Y. J
41、., B. M. Lee, J. H. Hahn, G. B. Lee, and D. S. Park. 2004. Sensitive and specific detection of Xanthomonascampestris pv. campestris by PCR using species-specific primers based on hrpF gene sequence. Microbiol. Res. 159:419-423.19. Park, D. S., J. K. Shim, J. S. Kim, B. Y. Kim, M. J. Kang, Y. J. Seol
42、, J. H. Hahn, R. Shrestha, C. K. Lim, S. J. Go, andH. G. Kim. 2006. PCR-based sensitive and specific detection of Pectobacterium atrosepticum using primers based on Rhsfamily gene sequences. Plant Pathol. 55: 625-629.20. Park, J. H., H. K. Park, B. C. Kang, E. S. Song, H. J. Jang, and C. M. Kim. 200
43、6. Development of genus- and speciesspecific probe design system for pathogen detection based on 23S rDNA. J. Microbiol. Biotechnol. 16: 740-747.21. Pegg, K. and M. Moffett. 1971. Host range of the ginger strain of Pseudomonas solanacearum in Queensland. Aust.J. Exp. Agric. Anim. Husb. 11: 696-698.2
44、2. Pradhanang, P. M., J. G. Elphinstone, and R. T. V. Fox. 2000. Sensitive detection of Ralstonia solanacearum in soil: Acomparison of different detection techniques. Plant Pathol. 49: 414-422.23. Rasmussen, O. F. and J. C. Reeves. 1992. DNA probes for the detection of plant pathogenic bacteria. J.
45、Biotechnol. 25:203-220.24. Schierwater, B. and A. Ender. 1993. Different thermostable DNA polymerases may amplify different RAPD products.Nucleic Acids Res. 21: 4647-4648.25. Sch鰊feld, J., H. Heuer, J. D. van Elsas, and K. Smalla. 2003. Specific and sensitive detection of Ralstonia solanacearum in s
46、oil on the basis of PCR amplification of fliC fragments. Appl. Environ. Microbiol. 69: 7248-7256.26. Seal, S. E., L. A. Jackson, and M. J. Daniels. 1992. Isolation of a Pseudomonas solanacearum-specific DNA probe bysubtraction hybridization and construction of species-specific oligonucleotide primer
47、s for sensitive detection by the polymerase chain reaction. Appl. Environ. Microbiol. 58: 3751-3758.27. Seal, S. E., L. A. Jackson, J. P. W. Young, and M. J. Daniels. 1993. Differentiation of P. solanacearum, P. syzygii, P.pickettii and the blood disease bacterium by partial 16S rRNA sequencing: Construction of oligonucleotide primers for sensitive detection by polymerase chain reaction. J. Gen. Microbiol. 139: 1587-1594.28. Van Elsas, J. D., P. Kastelein, P. van Bekku