低空风切变对飞行的影响及对策.doc

上传人:仙人指路1688 文档编号:3928665 上传时间:2023-03-28 格式:DOC 页数:27 大小:542.50KB
返回 下载 相关 举报
低空风切变对飞行的影响及对策.doc_第1页
第1页 / 共27页
低空风切变对飞行的影响及对策.doc_第2页
第2页 / 共27页
低空风切变对飞行的影响及对策.doc_第3页
第3页 / 共27页
低空风切变对飞行的影响及对策.doc_第4页
第4页 / 共27页
低空风切变对飞行的影响及对策.doc_第5页
第5页 / 共27页
点击查看更多>>
资源描述

《低空风切变对飞行的影响及对策.doc》由会员分享,可在线阅读,更多相关《低空风切变对飞行的影响及对策.doc(27页珍藏版)》请在三一办公上搜索。

1、低空风切变对飞行的影响及对策摘 要:本文首先介绍了低空风切变的定义、表现形式,通过对事例的分析阐述产生风切变的天气背景。从飞行动力学的观点入手研究低空风切变对飞行的影响,揭示了风切、。关键词:风切变;飞行;航空;安全;管制指挥Influence and Countermeasure of Low-level Windshear in Flight Student: Quan zhiyang Tutor: Wang yongzhongAbstract: This paper introduces the definition and expression of low-level windshe

2、ar. The author explicated the weather which would procreate low-level windshear by analysising some examples. After discussing the influence of low-level windshear, reveal its physical essence. The author especially discussed how to judge and avoid it at ATC s viewpoint. In the end, the author has g

3、iven some advices on how to improve the ability of ensuring flying safety.Keywords: windshear;flight ;aviation;safety;traffic control 毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名: 日期: 毕业论文(设计)授权使用说明本

4、论文(设计)作者完全了解*学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。学校可以公布论文(设计)的全部或部分内容。保密的论文(设计)在解密后适用本规定。 作者签名: 指导教师签名: 日期: 日期: 注 意 事 项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词 5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附

5、录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.

6、装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它引 言在航空器起飞和进近着陆过程中,低空风切变对飞行安全的危害极大。它可以使飞机突然间掉高度,防范不及就会产生及其严重的后果。比如:1975年6月24日15时05分(地方时),美国肯尼迪国际机场受到一条弱冷锋影响,沿锋面有雷暴、阵雨。15时04分美国东方航空公司66号航班进场着陆,在150米高度上遇到大雨。在120米高度上可以看到着陆灯,飞机在7秒钟内空速由256千米/小时减小到227千米/小时,在100米高度附近,由原来的逆风突然变成下降气流,飞机随即进入微下击暴流的中心,在60米高度上遇到6

7、.7米/秒的下降气流,飞机急剧失速,以致于无法复飞。15是05分,在离跑道730米处左机翼撞到着陆灯上,飞机继续前冲380米后摔裂,造成机上112人死亡,12人受伤的惨剧。1983年4月4日,中国南海石油联合服务总公司民航直升机公司空中国王-200型飞机,起飞过程中遇到低空风切变,失速坠地。2000年6月22日,武汉航空公司运七飞机在武汉王家敦机场进场中遇到雷暴云,受微下击暴流影响坠地失事。据美国国家运输安全委员会(NTSB)确认,自1975年以来,在美国发的恶性空难中,由50%以上由天气原因造成,而低空风切变所占的比例约为40%,为最高。另据不完全统计,在19701985年16年间,在国际定

8、期和非定期航班飞行以及一些任务飞行过程中,至少发生过28次与风切变有关的飞行事故。可见低空风切变对于飞行安全的威胁是何等的大,并且由于它具有时间短,尺度小,强度大的特点,被人们称为“隐形杀手”。为了加深对这一现象及危害的认识,本文就低空风切变的成因和对飞行安全的影响,以及对遭遇风切变的飞机的管制指挥作一些初步的探讨,为确保飞行安全提供一些有利的启示。1 风切变的定义及表现形式1.1 风切变的定义众所周知,风即是指空气的流动,它是一个既有方向又有大小的矢量。因此我们可以用风场来描述风。风切变即是指风在空间任意两点之间的矢量差。所谓的低空风切变就是指发生在600米以下的风的切变。飞行事故调查学通过

9、研究得出如下结论:航空器的起飞和进近着陆阶段是事故的高发段,所以低空风切变也就成了在近地面对航空器飞行安全最具威胁的杀手。由于风的矢量性,故而风向风速二者其一或全部发生了变化就会产生风切变。而风切变也因为风场的空间结构的不同也表现为以下的三种形式:垂直风切变、 水平风切变、 垂直风的切变。1.2 风切变的表现形式根据飞机相对于风矢量及其变化的各种情况,按航迹可以把风切变分为下列四种表现形式:1.2.1 顺风切变(Tail windshear) 飞机从小的顺风区进入大的顺风区或从逆风区进入顺风区以及从大的逆风区进入小的逆风区等情形,它会使飞机空速减小,是一种比较危险的风切变形势。(如图1a)1.

10、2.2逆风切变(Head windshear) 图1风切变示意图指飞机从小的逆风区进入大的逆风区,或从顺风区进入无风区以及从大顺风区进入小顺风区等情形,它使飞机空速增加、升力增大,它比顺风切变相对危害要轻点。(如图1 a) 1.2.3垂直风切变(Vertical windshear)指飞机从无明显升降气流区进入强烈升降气流区的情形,特别是强烈的下击暴流,具有猝发性,使飞机突然下沉损失高度,危害最大。(如图1b)1.2.4侧风切变(Cross wind shear)指飞机从一种侧风或无侧风状态,进入另一种明显不同的侧风状态,分为左侧风切变和右侧风切变,它使飞机发生偏航、侧滑、滚转等现象。侧风切变

11、较大时对飞行安全影响也较大。(如图1c)1.3 风切变的强度划分 风切变的强度是以单位距离内的风速变化值来表示,例如在1000米内风速改变量为10米/秒,这个水平风切变强度为0.001M/S/M。1.3.1水平风垂直切变强度标准根据国际民航组织所建议采用的水平风垂直切变强度标准,如表1所示,这里用的空气层垂直厚度应取30米。用于计算的风资料应取2分钟左右的平均值为宜。一般认为0.1(1/秒)以上的垂直切变就会对喷气运输机带来威胁。为此国际民航组织对水平风切变随高度变化强度作了规定,分为轻度、中度、强烈和严重四个等级。(如表1所示) 表1 水平风垂直切变强度数 值风切变强度(低空)数值标准(米/

12、秒)/30米1/秒(海里/小时)/30米轻 度02.000.0704中 度2.14.00.080.1358强 烈4.16.00.140.20912严 重6.00.20121.3.2水平风的水平切变强度标准这里介绍的是美国在机场的低空风切变报警系统中所采用的报警标准,该系统在机场平面有六个测风站,即中央站和五个分站。各分站距中央站平均约为3公里左右。系统规定任意分站与中央站的风向风速向量差达到7.7米/秒以上时即发出报警信号。所以,上述情况中相当的水平风水平切变值2.6(米/秒)/30米,可作为能对飞行构成危害的强度标准。1.3.3垂直风的切变强度标准垂直风的切变强度,在相同的空间距离内主要是由

13、垂直风本身的大小来决定。对飞行安全危害最大的是强下降气流。根据藤田和拜尔斯(1978年)的建议,提出一种称之为下冲气流(亦有译为下击暴流)的数值标准,它从下降气流速度和到达地区的辐散值来确定。表2列出了下降气流和下冲气流的数值标准。后来对于下冲气流又分为微下冲气流和宏下冲气流两类。其中微下冲气流的空间尺度更为小些(小于4千米),下降气流速度更大些,但并没有给出一个具体的强度标准值。 表2下降气流和下冲气流的强度标准下降气流下冲气流91米高度以上的下降速度小于3.6米/秒大于等于3.6米/秒800米直径内的辐散值小于144/时大于等于144/时2 产生风切变的天气背景及时空尺度特征根据前面提到的

14、,风切变可以简单地理解为局部范围内风矢量的变化。因此只要空气块在相互之间有相对运动(速度差),就可以形成风切变。对于这种空气相对运动的型式,人们可以通过天气背景和环境条件来掌握它。因此有人把这些天气背景和环境条件称之为风切变的源,在大气边界层内一般来说,有以下四种低空风切变源,即:雷暴、锋面系统、辐射逆温和地形地物。2.1 雷暴(Thunderstorm)图2 雷暴产生的风切变区2.1.1 雷暴产生风切变的原因雷暴是产生低空风切变的重要天气。有关强烈雷暴形成的有利条件包括:1)深厚而不稳定的气层;2)低层为潮湿空气,有充沛的水气;3)存在一些动力或热力的触发机制,有足够的冲击力。雷暴单体下放的

15、下曳气流在相当的范围内,可造成由下击暴流和雷暴外流组成的两种不同的风切变。(如图2)一种是发生在雷暴单体下面,由下击暴流造成的风切变。(如图3)这种风切变的特点示范围小、寿命短、强度大。飞机在起飞后首先遇到逆风,且其性能增强(1);随后相继遇到逆风分量减小(2);下沉气流(3);最后是强烈的顺风(4)。图中(2)至(5)全 都使飞机性能下降,位置(5)代表刚要撞地前的极端情形。 图3飞机遭遇强下击暴流示意图在雷雨天气情况下,发生微下击暴流的可能性有60%70%。另一种是雷雨中的下冲气流到达地面后,形成强烈的冷性气流向四处传播,这股气流可传到离雷暴1525公里以外,并使暖湿空气入流抬升形成阵风锋

16、(Gust front),在雷暴下大范围内引起180度的风向变化,表现为强顺风切变和强逆风切变。并且由于有一部分强风切变区远离雷暴主体,不伴随其他天气现象不易察觉,所以往往对飞行安全威胁很大。2.1.2微下击暴流引起的飞行事故分析表3飞机事故与微下击暴流的气象条件时间1956.6.231975.6.241975.6.241975.8.71976.6.231977.6.31979.8.22标准时5:23pm2:57pm3:05pm4:11pm4:12pm12:59pm2:12pm机场KanoJFKJFKDenverPhiladhiaTucsonAtlanta班机号BOAC252EA902EA66

17、CO426AL121CO63EA693飞行状态起飞降落降落起飞降落起飞降落伤/亡7/32盘旋12/11215/0106/0返航盘旋微下击暴流直径3.5km2.2m4.8km3.0m4.1km2.5m5.0km3.1m2.8km1.8m3.1km1.9m2.5km1.5m 逆风切变20kt逆风转强顺风11kt逆风转4kt顺风16kt逆风到4kt逆风10kt逆风转50kt顺风65kt逆风转静风30kt逆风转30kt顺风2kt逆风到55kt逆风下降气流速度20fps25fps3fps15fps3到5fps60fps距地面高度200ft250ft70ft260ft100ft700ft2.1.3雷暴引起

18、的典型事故分析2000年6月22日武汉航空公司Y7/B3479号飞机执行恩施武汉(汉口)航班任务。13时37分恩施起飞。因遇雷雨天气,飞机在汉口机场第一次降落不成功,复飞拉升,而后于14时54分失去联系。16时左右接到报告,该机在武汉市汉阳区永丰乡四台村附近坠毁失事,机组4人,乘客38人全部遇难。这次武航 3479号飞机在汉口机场进近飞行过程中,因绕飞雷雨在低高度、低速度的情况下,遇到了强低空风切变。据现场物象考察,并结合气象资料初步分析认为,此处是风力最强之地,最大风速达25m/s以上。(附图4飞机下坠过程)图4飞机坠毁前40秒高度曲线图2.2 锋面(Front)2.2.1 锋面产生风切变的

19、原因锋面是产生风切变的重要天气条件。锋面两侧的气象条件有很大差异,锋面过渡区的垂直结构,是产生风切变的重要条件。一般锋面两侧的温差大于等于5摄氏度,锋面移动的速度大于等于15米/秒时,都会在锋面附近产生对飞行有影响的低空风切变。冷锋经过机场时,低空切变随锋面一起或稍后出现。因冷锋移动较快所以这种风切变持续时间较短,但冷锋及强冷锋后面风区往往存在严重的低空风切变。暖锋伴随的低空风切变,由于暖锋移动较慢,它在机场上空持续时间相对较长,也可出现在距风区较远的地方。2.2.1锋面产生风切变事故经过及天气形势分析 1994年5月17日15时50分(北京时)2121号飞机由温州起飞,预计18时14分到达沈

20、阳桃仙机场。17时40分与塔台联系,塔台通报地面风300、4米/秒,指挥由56向236方向落地,18时飞机进入五边,边下降边减速,过渡为450500m放襟翼40,表速为136海里/小时,此时塔台通报风速增加 为9m/s,机组立即增速到140海里/小时,当高度为200m距跑道大约2km时,飞机油门1.46表速 图5 飞机遭遇风切变掉高度示意图140海里/小时,此时飞机颠簸、有响声,表速减到120海里/小时,掉高度100多米,操纵困难,这是距地面有80多米,机长马上判断到低空风切变,高喊“风切变”,立即加大油门,增加速度,油门加到2.0,表速指示140海里/小时,当距跑道1km飞机才逐渐平稳,马力

21、恢复正常,此时表速为140海里/小时,航向236,按正常操作于18时14分安全降落于桃仙机场。由于机长发现及时,判断正确,采取措施得当,避免了一次可能发生的事故。图5显示了2121号飞机遭遇低空风切变时的掉高度示意图。根据现代运输机航空气象记载:锋面移动速度大于55km/小时时,锋面附近会产生较强风切变,实际情况正是这样。20时,在沈阳附近有一条明显的切变线,切变线前为南-西南风,风速1016m/s,切变线后为西北风,风速410m/s,从周围实际情况看,17时到19时在沈阳附近有明显的切变线,17时沈阳是西风3m/s,18时西北风4m/s,19时为西南风3m/s,从高空风看15时10分沈阳高空

22、风:200m为3003m/s,400m为3105m/s,600m为3203m/s,这反映在锋面附近有很强的湍流,其表现在风速的阵性上,实测400m高度上风为3105m/s,而飞机进入五边后突然增大到14m/s,说明在机场300400米高度上存在较强的湍流。从地面到高空,在沈阳附近都存在着锋面系统引起的湍流和低空风切变。2.3 辐射逆温层和地形地物晴夜,伴随低层的辐射逆温,在逆温层顶部常出现低空风切变。其原因在于逆温层阻挡了上层风的动量下传,使地面风很弱,行成风的垂直切变。单纯辐射逆温引起的低空风切变的强度较雷暴和锋面引起的风切变弱的多,也比超低空急流引起的风切变稍弱。这种风切变有很强的规律性,

23、一般秋冬季节比较多。此外当机场周围的环境比较复杂时,也会产生对飞机的起飞、着陆有影响的低空风切变,如地形波、较大的水陆界面等,一般山地的高差大,水域面积大,机场附近高大建筑物群等易产生风切变,尤其在较强阵风条件下。2.4 各类风切变时空尺度特征表4 各类风切变时空尺度特征风切变类型空间(水平)尺度时间尺度危害程度微下冲气流4千米几分钟至十几分钟大宏下冲气流4千米几十分钟大雷暴阵风锋几十千米几小时大冷锋几百千米几十分钟中暖锋几百千米几十分钟中辐射逆温几百米至几千米几小时中地形风切变几百米至几十千米几小时中水陆界面风切变几至几十千米几小时小障碍物风切变几百米至十几千米几分钟至几小时小由表4我们可以

24、看出微下冲气流和宏下冲气流的水平尺度和时间尺度均不大,但因其具有很强的猝发性,而且强度极大,可以使飞机突然下沉,危害极大;雷暴阵风锋具有尺度大,时间长,危害大等特点,在飞行过程中需要特别注意;由锋面引起的风切变,尽管尺度很大,作用的时间也很长,但锋区风切变在整个锋线上的分布是不均匀的,其上可能有更小时空尺度的风切变存在,因而其危害不是很大;辐射逆温产生的风切变的尺度不大,作用时间不长,影响很有限。至于地形、水陆界面和障碍物风切变。它们的时空尺度分布有很大的不均匀性,主要与盛行风、地形尺度形状、水域和障碍物的大小有关,对飞行安全的影响不大。3低空风切变对飞行安全的影响我们简单地分析一下在风切变条

25、件下,在空中飞行的飞机所受到各种力的情况。假定飞机开始是顶风飞行的,这时空速、地速和流过机翼表面的气流和产生的升力都是恒定的。地速等于空速减去顶风分量。当飞机进入风切变后,如果原有的逆风突然降为零,空速就要降低,降低值与逆风分量变化相同。这时如果飞机迎角不变,升力也就随之要降低。升力降低的结果使飞机向不平横诸力的合力方向加速。当飞机的总重量变化不大时,由于升力不再与总重量平衡,飞机就要掉高度。显然,这时飞机要保持原有的升力,就必须增大推力,使飞机加速,如果飞机能在一瞬间就加到所需的速度,风切变就不会造成影响,然而问题在于飞机改变速度需要时间,这个时间主要是:飞行员的反应时间、发动机增加(或降低

26、)功率的时间、飞行员操纵飞机改变飞行状态(增大或减小迎角、保持合适的升降速度等)的时间等等。美国曾计算过某大型喷气飞机在风切变条件下改变空速需用的时间。假设飞机在风速为36公里/小时(10M/S)的顶风中飞行,空速为180公里/小时,地速为144公里/小时,突然进入风速为零的区域,空速降低到144公里/小时,在这种情况下,增加地速,使飞机空速恢复到180公里/小时,最少也要176秒钟,而飞机穿过风切变时间只需几秒钟。如果飞行员不能在这几秒钟之内操纵飞机使其高度不致降低过多以便完成增速的话,飞机就有坠毁的危险。下面以危害性最大的微下冲气流为例,它是以垂直风切变为主要特征的综合风切变区。由于在水平

27、方向垂直运动的气流存在很大的速度梯度,也就是说垂直运动的风速会出现突然的加剧,就产生了特别强的下降气流,被称为微下冲气流。这个强烈的下降气流存在一个有限的区域内,并且与地面撞击后转向与地面平行而变成为水平风,风向以撞击点为圆心四面发散,所以在一个更大一些的区域内,又形成了水平风切变。如果飞机在起飞和降落阶段进入这个区域,就有可能造成失事。比如,当飞机着陆时,下滑通道正好通过微下冲气流,那么飞机会突然的非正常下降,偏离原有的下滑轨迹,有可能高度过低造成危险。当飞机飞出微下冲气流后,又进入了顺风气流,使飞机与气流的相对速度突然降低,由于飞机在着陆过程中本来就在不断减速,我们知道飞机的飞行速度必须大

28、于最小速度才能不失速,突然的减速就很可能使飞机进入失速状态,飞行姿态不可控,而在如此低的高度和速度下,根本不可能留给飞行员空间和时间来恢复控制,从而造成飞行事故。低空风切变对飞行的影响很复杂,会使空速、迎角发生变化,使飞机升降,并伴随着上仰、下府、左右摇摆。顺风切变会使空速减小,逆风切变会使空速增加,侧风切变会使飞机产生侧滑和倾斜,垂直风切变会使飞机迎角变化,从而使飞机的升力、阻力、过载和飞行轨迹、飞机姿态发生变化。下面就从飞行原理方面介绍一下对风切变对飞行的影响。3.1 风切变对飞机性能的影响图6飞机受力和力矩示意图在讨论低空风切变对飞机性能影响前先,介绍一些气动力、气动力矩和角的概念。如图

29、6所示,表示作用在一架飞机上的各种力和力矩的图形。(升力、阻力、迎角的概念图形)垂直于相对气流方向的气动力叫做升力,用Y表示。并行于相对气流方向的气动力叫做阻力,用X表示。相对气流方向与翼弦所夹的角度叫迎角,用表示升力公式: Y=1/2 Cyv2S阻力公式: X=1/2 Cxv2S 式中 空气密度公斤秒2/米4 图7升力随迎角变化图 V 飞行速度米/秒; Cy 升力系数;Cx 阻力系数;S 机翼面积;在恒定的空速条件下,前面提到的各种气动力都随迎角的变化而变化,在正常的迎角范围里,在恒定的空速下,作用于飞机上的升力和迎角成正比。如图7所示在恒定空速条件下,升力是迎角和襟翼偏转的函数。(如图7)

30、 风切变能够使空速和迎角两者迅速发生变化,从而使气动力发生较大变化。气动升力是平衡重力的主要成分,升力可以使飞机持久的保持飞行。所以在定常平衡条件下,当其他力都比不变时,升力的损失也将导致航迹的恶化。(图7)描述了顺风切变和下降气流切变时航迹恶化的情形。风切变从两方面是气动升力变化:1)风速沿航迹变化,对升力产生直接影响,并与空速变化的平方成比例。2)垂直风切变使迎角发生变化,从而影响升力。它起初没有影响空速,如图所示(附图8)描述了垂直风切变对迎角的影响。上升气流的增加使迎角增加,导致气动升力增加。 图8 垂直风切变对迎角影响反之,下降气流的增加使迎角减小,导致气动升力的减小。风切变使空速或

31、迎角减小,近而使气动升力减小,导致航迹恶化。 风切变使得飞机的气动升力变化,除了会使航迹发生变化外,还会使得飞机的载荷也发生变化。飞机载荷是指除飞机自身重量之外的其他作用力,(发动机推力和气动力)的总和。其大小经常用载荷因素(简称过载)即飞机载荷与重力的比值来表示。由于发动机推力在立轴方向上的分量很小,所以过载就是升力和飞机重力之比。即:ny=l/w(l为升力,w为重力)。飞机遇到垂直风切变时,迎角和过载将发生较大变化,如图8所示。如飞机在巡航过程中,重量较重、速度较大,遇到较强的上升气流会使飞机的升力猛然增大,使得ny=l/w过大,可能会超过飞机的最大使用过载,造成飞机局部变形或损坏,对飞行

32、安全构成威胁。3.2风切变的描述及飞机风速变化方程风和风切变可用不同的坐标系来描述。气象学中描述空间风场的完整方法是使用地面直角坐标系,研究风切变对飞行的影响,则采用飞行力学坐标系。在地面坐标系中风速矢量Vwg可以表示成 (1)式中为水平风速分量,顺风为正;侧风分量,向左为正;垂直风速分量,下降气流为正。变化风场特性与时间、地点有关,一般可写成。 (2) 则风的变化表示成: (3)等式右边第一项为局地导数项,表示在一个固定地点上风速随时间的变化;右边第二项为相对导数项,表示由于观测地点所看到的风速随时间变化。相对于飞机飞行速度而言,风场的移动速度要慢得多。而且在一个固定地点上,风速的变化也较飞

33、机位置的变化慢得多。在这样的前提下,可以把空间风场视为地点固定,并且风速不随时间变化的所谓“冻结场”。则由(3)式可知,风的变化只是由飞机位置变化引起的。若飞机位置变化表示为: (4) 则飞机位置变化引起的风速变化为: (5)式中为风场的梯度矢量,为飞机飞行时的航迹速度矢量。对于在飞机所在区域内的三维风场,风场的梯度矢量可以表示为: (6)飞机飞行时的航迹速度矢量在地坐标系上的分量表达式为: (7)式中为飞机相对地面的运动速度,r为飞机的航迹倾角。则飞机位置变化引起的风速变化矢量形式为= (8)飞机风速变化方程(8)式中的分别表示飞机上的顺风、侧风和垂直风的变化,其变化主要取决于实际风场的风速

34、梯度即顺风切变、侧风切变和垂直风切变,飞机相对于地面的运动速度和飞机的航迹倾角。由上式我们可以定性的描述低空风切变对飞行的影响:在飞机相对于地面的运动速度和飞机的航迹倾角变化不大时,飞机风速变化主要取决于实际风场的风速切变即顺风切变、侧风切变和垂直风切变。(1)飞机的顺风或者逆风分量 的变化主要取决于空间顺风或者逆风切变、飞机相对于地面的运动速度和航迹倾角。当空间水平风速的垂直切变和水平切变较大时,将直接改变飞机的空速,增加或减少飞机的升力以及改变飞机的航迹,如果不加修正,使飞机在跑道外接地或冲出跑道。(2)飞机的侧风分量= 变化主要取决于空间侧风切变、飞机相对于地面的运动速度和航迹倾角。当空

35、间侧风速的垂直切变和水平切变较大时,飞机在起飞和着陆时,影响飞机对准跑道,如果不加修正,飞机将产生横向偏移,冲出跑道的左侧或者右侧。(3)飞机的垂直风分量= 化主要取决于空间的上升气流和下降气流的变化、飞机相对于地面的运动速度和航迹倾角。当飞机进入上升气流或下降气流时,飞机的空速、升力以及航迹将发生变化,如果风切变严重,飞机在起飞和着陆时,升力变化影响飞机距地面的高度,可能会造成很严重的后果。4 低空风切变的判定的方法由于低空风切变对飞行安全的影响及危害较大,所以及时正确的判断低空风切变的存在,类型和强度,是减轻和避免低空风切变危害,确保飞机起飞和着陆安全的重要措施。判断低空风切变的方法目前主

36、要有以下三种。4.1目视判别方法一旦前方出现低空风切变,常有可见征兆,所以目视判别方法是一种较为直观的判别方法。4.1.1雷暴冷性外流的沙暴堤(沙暴前缘呈一堵又宽又高的沙壁)雷暴冷性外流前缘的强劲气流会把地面的尘土吹起相当的高度并随气流移动。它能显现出外流气流的范围和高度,其高度越高,强度越大。一旦见到这种沙暴堤出现就应高度警惕,立即采取避让措施,千万不能穿越它,因为它后就是强烈的风切变。4.1.2雷暴云体下的雨幡雷暴云体下的雨幡是有强烈下降气流的重要征兆。雨幡的形状,颜色深浅,离地高度等都同风切变的强度有关。通常雨幡下垂高度越低,个体形状越大,色泽越暗,预示着风切变和下击暴流强度越大。由于雨

37、幡四周相当范围(12km)内的风场都比较复杂,常有强的风切变。所以,一旦遇到雨幡,不仅不能穿越它,而且还要保持一定的距离。4.1.3滚轴状云在雷暴型和强冷锋型风切变中,强的冷性外流往往有明显的涡旋运动结构,并伴有低空滚轴状云。从远处看,它犹如贴地滚滚而来的一堵云墙,其颜色多为乌黑灰暗,伴有沙尘暴的多为黄褐色。云底高一般在几百米以下,这种云的出现,预示着强烈的地面风和低空风切变。目视判别方法比较直观、简便,但也存在很大局限性,它只能为飞行员提供粗略的形态特征,缺乏确切的定量概念,只能识别较严重的风切变。对于一些无目视征兆的风切变,如逆温型风切变,它是一种晴好天气的风切变,而且地面风速不大,易使人

38、造成错觉,又如强烈雷暴的远程外流区上下的风切变,几乎无征兆,需要机载或地面设备来检测。4.2 座舱仪表判别法在正常的起飞和着陆过程中,驾驶舱各种仪表有一定的变化范围。飞机一旦遭遇风切变,首先会反映到座舱仪表上来,使仪表出现异常指示。下面来介绍几种主要飞行仪表在遭遇风切变时的反应。4.2.1空速表空速表示飞机遇到风切变时反应最灵敏的仪表之一,飞机遭遇风切变时空速表指示一般都会发生剧烈变化。所以一旦出现这种异常指示,即应警惕风切变的危害。美国波音公司规定,当空速指示值突然改变2837km/h,应终止起飞或不作进近着陆。在穿越下击暴流时,往往先是逆风切变使空速增大,紧接着就是顺风切变使空速减小,而真

39、正的危害发生在空速迅速下降的时刻,所以不要被短时的增速所迷惑。4.2.2高度表高度表指示的正常下滑高度是飞机进近着陆的重要依据。如果飞机下滑过程中高度表出现异常指示,大幅度偏离正常指示时,必须立即采取措施,及时拉起。当然也应注意到遭遇微下击暴流时,会出现因遇强风而短暂的飞机高于正常下滑道高度的现象,紧接着就会发生危险的掉高度。所以,不要做出错误判断。4.2.3升降速率表升降速率表与高度表密切相关,在遭遇风切变时反应很明显。如果见到升降速率表指示异常,特别是下沉率明显增加时,必须立即采取措施及处理防止飞机掉高度。美国波音公司建议在下降速度短时内改变值达152.4m/min(500ft/min)时

40、,即认为遇到强飞切变,飞行员应采取复飞等相应措施。4.2.4俯仰姿态指示器俯仰角是飞机起飞、下滑时飞行员必须掌握的重要数据。例如许多喷气运输机都采用3下滑,6或10起飞,在起落过程中控制该值保持其基本不变。一旦遇到风切变,俯仰角度指示将变化,变化越快、越大,则危害越大。美国波音公司规定,俯仰角度指示器突然变化超过5时,即认为遭遇强风切变,应中止进近而复飞。4.3 机载设备探测低空风切变的方法目前机载探测设备主要有两种类型,反应式风切变报警系统和预报式风切变报警系统。4.3.1反应式风切报警系统一般要求飞机遇到中等强度的风切变时,反应式风切变报警系统在10s内发出报警信号,遇到严重风切变时,反应

41、式风切变报警系统在5s内发出“Wind Shear!”警报声。机组应当立即做出反应,采取改出措施,将高度损失减小到最小程度。4.3.2预报式风切变警报系统它是一种具有前视探测功能的机载X波段脉冲雷达,能够在飞机遭遇风切变之前15s左右发出风切变警报,并将微下击暴流显示在雷达屏幕上,甚至当飞机开始起飞滑跑时,即能把空中走廊中的微下击暴流显示给飞行员,使之可以有时间采取高飞或其他适当的措施。充分显示出预报式风切变报警系统比反应式风切变报警系统的优越性。另外机载红外辐射系统,可分别检测前方1020km和侧方200m范围内的温度值加以比较,根据两者的温差,确定雷暴外气流的阵风锋。5 风切变情况下的管制

42、5.1防止飞机进入有低空风切变的区域由于低空风切变 对飞行的危害性,因此,对于在低空风切变条件下的管制指挥过程中要以防止飞机进入有低空风切变的区域为工作重点,要做到这一点,我们必须注意以下几点:(1)制订机场使用细则时,要考虑到机场周围地形环境所容易形成的风切变对飞行的影响,要规定出什么情况下可能存在风切变、怎样确定、如何避让,如有风切变,要根据风切变的强度、飞机的性能和当时的天气情况,提醒并指挥飞行员或正常着陆、或空中等待、或飞往备降场。(2) 提高管制员对低空风切变知识和认识水平,特别是低空风切变的分类,特性以及对飞机的危害,飞行员改出的方法以及产生低空风切变的天气背景等知识和认识,具备了

43、这些知识和认识,当遇到低空风切变时管制员才能及时分析判断进而实施正确果断的指挥。(3)作为管制员还应该了解的是不同机型的侧风、顶风限制及机载预警系统的装备情况;其次还应该了解本区域风的季节变化规律。例如:武汉终端区,处在西风带,高空及平流层常年以西风多见;春季在北方强冷空气南下时,常发生大风,并伴有强对流天气;夏季受到副热带高压控制,下沉气流明显,副高南退之际易出现大风天气。积累和掌握本区域气象常识对管制员相当重要,特别是了解一些不利风临近机场时明显的目视征兆,如:杂尘飞扬,强风扬沙,尘卷龙卷,黑云压境,雨幡出现及自动观测显示器上的风向变化显著、阵风和平均风相差甚远等,都有可能是风切变,及时通

44、知机组做好准备,以利于飞行安全。(4)值班管制员要对当班期间的天气形势有个大体了解。一般情况下机场周围有雷雨活动期间或冷锋过境两小时左右易产生低空风切变。另外高度100200米有低空急流或地形复杂时也会产生低空风切变。5.1.5 配备风切变的探测和报警设备。常规的气象仪器对风切变的探测能力很低 ,有的甚至是无效的,要配备新的设备来满足对风切变探测的要求。目前,国外的机场主要配备的是多普勒气象雷达和一种有六个或者十一个测风点的低空风切变告警系统,它们能及时探测出风切变的存在。(5) 在指挥过程中要加强与气象部门的协同,认真研究天气实况,对有可能存在风切变的天气要加强对风向、风速的观测,并把有关情

45、况及时通报飞行员,使飞行员能及时判断出可能存在的风切变,采取有利措施,保障飞行安全,严禁飞机进入已知有严重风切变的区域。(6) 多机飞行中当有飞机报告遭遇风切变时,要指挥其它飞机避让开已知的风切变区域,但对于高度较高的、对飞行安全影响较小的风切变,可以指挥飞机有准备地穿越;而对于高度较低、对飞行安全影响较大的风切变,要指挥飞机在安全高度以上等待,待风切变消失以后再落地。一般风切变存在的时间为10-30分钟,如果估计在短时间内风切变不会消失,可以指挥飞机飞往备降场着陆。(7) 管制员主要通过天气预报和测报以及机组的报告来获得低空风切变情况,从目前国内情况来看,大多数机场对低空风切变的预报和测报的准确度很低或根本就做不出来。实际管制员只能通过机组的报告来获取低空风切变的情报,当管制员得知机组报告有低空风切变时,要做好详细记录,内容包括报

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号