双闭环直流调速系统的设计及MATLAB仿真.doc

上传人:laozhun 文档编号:3936878 上传时间:2023-03-28 格式:DOC 页数:59 大小:952KB
返回 下载 相关 举报
双闭环直流调速系统的设计及MATLAB仿真.doc_第1页
第1页 / 共59页
双闭环直流调速系统的设计及MATLAB仿真.doc_第2页
第2页 / 共59页
双闭环直流调速系统的设计及MATLAB仿真.doc_第3页
第3页 / 共59页
双闭环直流调速系统的设计及MATLAB仿真.doc_第4页
第4页 / 共59页
双闭环直流调速系统的设计及MATLAB仿真.doc_第5页
第5页 / 共59页
点击查看更多>>
资源描述

《双闭环直流调速系统的设计及MATLAB仿真.doc》由会员分享,可在线阅读,更多相关《双闭环直流调速系统的设计及MATLAB仿真.doc(59页珍藏版)》请在三一办公上搜索。

1、新疆工业高等专科学校毕业设计双闭环直流调速系统的设计及MATLAB仿真王龙系 别: 电气与信息工程系 专业班级: 生产过程自动化0823(1)班 指导教师: 吴春艳 完成日期: 2011年6月14日 毕业设计评定意见书设计题目: 双闭环直流调速系统设计及MATLAB仿真 专 题: 双闭环直流调速系统设计及MATLAB仿真 设 计 者:姓名 王龙 专业 生产过程自动化 班级 08-23(1)班 设计时间: 2011年 4月 12日 2011年 6月14日指导教师:姓名 吴春艳 职称 副教授 单位 新疆工业高等专科学校 评 阅 人:姓名 职称 单位 评定意见:评定成绩:指导教师(签名): 年 月

2、日评阅人(签名): 年 月 日答辩委员会主任(签名): 年 月 日毕业设计评定意见参考提纲1.学生完成的工作量与内容是否符合任务书的要求。2.设计或论文(说明书)的优缺点,包括:学生理论水平、独立实践工作能力、表现出的创造性和综合应用能力、勤勉态度等。3.设计或论文(说明书)中较成功的部分。4.作毕业设计或论文(说明书)时遇到的困难和问题。电气与信息工程系系毕业答辩情况记录表答辩人姓名王龙班 级仪表08-23(1)班专 业生产过程自动化设计题目双闭环直流调速系统设计及MATLAB仿真指导老师吴春艳答辩日期2011年 6月 15 日答辩时间时 分 时 分自述回答问题小结 答辩组长: 年 月 日

3、新疆工业高等专科学校毕业设计任务书一、 题目:双闭环直流调速系统的设计及MATLAB仿真二、 指导思想和目的:通过毕业设计,培养学生综合运用所学的知识和技能解决问题的本领,巩固和加深对所学知识的理解;培养学生调查研究的习惯和工作能力;培养学生建立正确的设计和科学研究的思想,树立实事求是、严肃认真的科学工作态度。三、 设计任务或主要技术指标:(1)设计双闭环直流调速系统。(2)根据系统的结构、各单元间的相互关系和参数,确定系统固有部分的数学模型(结构图)(3)对系统的固有部分的数学模型进行近似处理与简化,并求出系统固有部分的频率特性。(4)根据对系统的要求,确定系统的静态和动态性能指标,再根据性

4、能指标的要求,确定预期频率特性。(5)将系统固有部分的频率特性和预期频率特性进行比较,确定校正装置的结构与参数。通过MATLAB仿真对系统某些部分的结构和参数进行修正,以达到满足性能指标的要求。(6)完成结构图,MATLAB仿真的波形图(7)编写设计说明书。四、 设计进度与要求:(1)布置设计任务,深入了解设计内容,阅读参考资料,学习有关内容。(2)确定具体控制方案及相关参数。(3)修改完善设计方案并绘制必须的图纸草图,编写设计说明书。(4)修改、打印设计说明书,画正式图纸。(5)总结,准备毕业答辩,完成答辩。五、 主要参考书及参考资料:1 熊新民 自动控制原理与系统 电子工业出版社 2003

5、年7月2 张希周 自动控制原理 重庆大学出版社 2003年10月专业班级:生产过程自动化08-23(1)班 学生:王龙 指导教师:吴春艳 2011 年 6 月 14 日教研室主任(签名): 系(部)主任(签名): 年 月 日摘 要转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文采用转速、电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内

6、环;转速环在外边,称做外环。这就形成了转速、电流双闭环调速系统。先确定其结构形式和设计各元部件,并对其参数计算。最后采用MATLAB/SIMULINK对整个调速系统进行了仿真分析。直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。本文从直流电动机的工作原理入手,建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,本文设计了一套实验用双闭环直流调速系

7、统,详细介绍了系统主电路、反馈电路、触发电路及控制电路的具体实现。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。关键词: 直流电机 直流调速系统 速度调节器 电流调节器 双闭环系统 仿真目 录1绪 论11.1 直流调速概念11.2 直流调速系统的发展史11.3 研究双闭环直流调速系统的目的和意义21.4 本文的研究内容32直流调速系统32.1 直流调速系统的调速

8、原理及性能指标42.1.1 直流调速系统的调速原理42.1.2 直流调速系统的性能指标42.1.3 动态性能指标52.2 电流、转速双闭环直流调速系统的理论分析72.2.1 双闭环调速的工作过程和原理72.2.2 双闭环直流调速系统的组成及其静特性82.3 双闭环直流调速系统的数学模型和动态性能分析112.3.1 双闭环直流调速系统的数学模型的建立112.3.2 起动过程分析122.3.3 动态抗干扰性分析152.4 调节器的工程设计方法152.4.1 PI调节器152.4.2 调节器的设计方法162.4.3 型系统与型系统的性能比较162.4.4 转速-电流调节器结构的确定172.5 电流环

9、、速度环的设计182.5.1 转速调节器、电流调节器在双闭环直流调速系统中的作用182.5.2 调节器的具体设计183 PWM脉宽调制223.1 PWM基本介绍223.2 脉宽调制变换器223.3 桥式可逆PWM变换器234 直流电动机数学模型的建立264.1 数学模型的建立264.1.1 写出平衡方程式、拉普拉斯变换264.1.2 动态结构图274.2 本设计中电动机部分的数据采集和计算315 双闭环直流调速系统仿真325.1 MATLAB简介325.1.1Simulink概述355.1.2理想同步电机假设355.1.3建模背景365.2仿真系统总体设计395.2.1系统对象395.2.2电

10、源395.2.3abc/dq转换器395.2.4电机405.2.5电磁转矩405.3控制反馈环节415.3.1电源415.3.2abc/dq转换器425.3.3电机.425.3.4电磁转矩435.4双闭环直流调速系统的仿真图:44总 结 47致 谢48参 考 文 献49附 录501绪 论1.1 直流调速概念直流调速是指人为地或自动地改变直流电动机的转速,以满足工作机械的要求。从机械特性上看,就是通过改变电动机的参数或外加工电压等方法来改变电动机的机械特性,从而改变电动机机械特性和工作特性机械特性的交点,使电动机的稳定运转速度发生变化。1.2 直流调速系统的发展史直流传动具有良好的调速特性和转矩

11、控制性能,在工业生产中应用较早并沿用至今。早期直流传动采用有接点控制,通过开关设备切换直流电动机电枢或磁场回路电阻实现有级调速。1930年以后出现电机放大器控制的旋转交流机组供电给直流电动机(由交流电动机M和直流发电机G构成,简称GM系统),以后又出现了磁放大器和汞弧整流器供电等,实现了直流传动的无接点控制。其特点是利用了直流电动机的转速与输入电压有着简单的比例关系的原理,通过调节直流发电机的励磁电流或汞弧整流器的触发相位来获得可变的直流电压供给直流电动机,从而方便地实现调速。但这种调速方法后来被晶闸管可控整流器供电的直流调速系统所取代,至今已不再使用。1957年晶闸管问世后,采用晶闸管相控装

12、置的可变直流电源一直在直流传动中占主导地位。由于电力电子技术与器件的进步和晶闸管系统具有的良好动态性能,使直流调速系统的快速性、可靠性和经济性不断提高,在20世纪相当长的一段时间内成为调速传动的主流。今天正在逐步推广应用的微机控制的全数字直流调速系统具有高精度、宽范围的调速控制,代表着直流电气传动的发展方向。直流传动之所以经历多年发展仍在工业生产中得到广泛应用,关键在于它能以简单的手段达到较高的性能指标。例如高精度稳速系统的稳速精度达数十万分之一,宽调速系统的调速比达1:10000以上,快速响应系统的响应时间已缩短到几毫秒以下。在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较

13、高的机电能量转换效率;二是应能根据生产机械的工艺要求控制和调节电动机的旋转速度。电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。因此,调速技术一直是研究的热点。 长期以来,直流电动机由于调速性能优越而掩盖了结构复杂等缺点广泛的应用于工程过程中。直流电动机在额定转速以下运行时,保持励磁电流恒定,可用改变电枢电压的方法实现恒定转矩调速;在额定转速以上运行时,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。直流电动机具有良好的运行和控制特性,长期以来,直流调速系统一直占据垄断地位,其中,双闭环直流调速系统是目前直流调速系统中的主流设备,它具有调速范围宽、平稳性好

14、、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。自19世纪80年代起至19世纪末以前,工业上传动所用的电动机一直以直流电动机为唯一方式。到了19世纪末,出现了三相电源和结构简单,坚固耐用的交流笼型电动机以后,交流电动机传动在不调速的场合才代替了直流电动机传动装置。然而,随着生产的不断发展,调速对变速传动装置是一项基本的要求,现代应用的许多变速传动系统,在满足一定的调速范围和连续(无级)调速的同时,还必须具有持续的稳定性和良好的瞬态性能。虽然直流电动机可以满足这些要求,但由于直流电动机在容量、体积、重量、成本、制造和运行维护方面都不及交流电动机,所以长期

15、以来人们一直渴望开发出交流调速电动机代替直流电动机。从60年代起,国外对交流电动机调速已开始重视。随着电力电子学与电子技术的发展,特别是电力半导体器件的发展,使得采用半导体变流技术的交流调速系统得以实现。尤其是70年代以来,大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,为交流电力拖动系统的发展创造了有利条件,促进了各种类型交流调速系统:如串级调速系统,变频调速系统,无换向器电动机调速系统以及矢量控制调速系统等的飞速发展。目前交流电力拖动系统已具备了较宽的调速范围,较高的稳速精度,较快的动态响应,较高的工作效率以及可以四象限运行和制动,其静特性已可以与直流电动机拖动系统相媲美。国

16、际上许多国家交流电力拖动系统已进入工业实用化阶段,大有取代直流电力拖动系统的势头。但就目前而言,直流调速系统仍然是自动调速系统的主要形式,在许多工业部门,如轧钢、矿山采掘、纺织、造纸等需要高性能调速的场合得到广泛的应用。直流电动机可逆调速系统数字化已经走向实用化,其主要特点是: (1) 常规的晶闸管直流调速系统中大量硬件可用软件代替,从而简化系统结构,减少了电子元件虚焊、接触不良和漂移等引起的一些故障,而且维修方便; (2) 动态参数调整方便; (3) 系统可以方便的设计监控、故障自诊断、故障自动复原程序,以提高系统的可靠性; (4) 可采用数字滤波来提高系统的抗干扰性能; (5) 可采用数字

17、反馈来提高系统的精度; (6) 容易与上一级计算机交换信息; (7) 具有信息存储、数据通信的功能; (8) 成本较低。而且,直流调速系统在理论和实践上都比较成熟,从控制技术的角度来看,又是交流调速系统的基础,因此,应首先着重研究直流调速系统,这样才可以在掌握调速系统的基本理论下更好的对交流调速系统进行研究和探索。1.3 研究双闭环直流调速系统的目的和意义转速、电流双闭环直流调速系统是性能很好,应用最广的直流调速系统, 采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。转速、电流双闭环直流调速系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。首先,应掌

18、握转速、电流双闭环直流调速系统的基本组成及其静特性;然后,在建立该系统动态数学模型的基础上,从起动和抗扰两个方面分析其性能和转速与电流两个调节器的作用;第三,研究一般调节器的工程设计方法,和经典控制理论的动态校正方法相比,得出该设计方法的优点,即计算简便、应用方便、容易掌握;第四,应用工程设计方法解决双闭环调速系统中两个调节器的设计问题,等等。通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交

19、流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个生产领域。调速系统是当今电力拖动自动控制系统中应用最广泛的一中系统。目前对调速性能要求较高的各类生产机械大多采用直流传动,简称为直流调速。早在20世纪40年代采用的是发电机电动机系统,又称放大机控制的发电机电动机组系统。这种系统在40年代广泛应用,但是它的缺点是占地大,效率低,运行费用昂贵,维护不方便等,特别是至少要包含两台与被调速电机容量相同的电机。为了克服这些缺点,50年代开始使用水银整流器作为可控变流装置。这种系统缺点也很明显,主要是污染环境,危害人体健康。50年代末晶闸管出现,晶闸管变流技术日益成熟,使直

20、流调速系统更加完善。晶闸管电动机调速系统已经成为当今主要的直流调速系统,广泛应用于世界各国。近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、高智能化特点。同时直流电机的低速特性,大大优于交流鼠笼式异步电机,为直流调速系统展现了无限前景。单闭环直流调速系统对于运行性能要求很高的机床还存在着很多不足,快速性还不够好。而基于电流和转速的双闭环直流调速系统静动态特性都很理想。1.4 本文的研究内容本文从直流电动机的工作原理入手,建立了双闭环直流调

21、速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。然后按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。本文的主要工作:1. 掌握电机传动的工作原理及应用;2. 设计调速系统;主要内容包括:触发电路设计;电流调节器设计;转速调节器设计。3. 建立数学模型,计算其参数;4. 进行数字仿真,验证其设计;5. 完成相关实验。2直流调速系统2.1 直流调速系统的调速原理及性能指标2.1.1 直流调速系统的调速原理直流电动机具有良好的起、制动性能,宜于在广范围内平滑调速,所以由晶闸管直流电动机(VM)

22、组成的直流调速系统是目前应用较普遍的一种电力传动自动化控制系统。它在理论上实践上都比较成熟,而且从闭环控制的角度看,它又是交流调速系统的基础。从生产机械要求控制的物理量来看,电力拖动自动控制系统有调速系统、位置随动系统(伺服系统)、张力控制系统、多电机同步控制系统等多种类型,各种系统往往都是通过控制转速来实现的,因此,调速系统是最基本的电力拖动控制系统。直流电动机的转速和其它参量的关系和用式(21)表示 (21)式中 :n电动机转速;U电枢供电电压; I电枢电流; R电枢回路总电阻,单位为由电机机构决定的电势系数。在上式中, 是常数,电流I是由负载决定的,因此,调节电动机的转速可以有三种方法:

23、(1)调节电枢供电电压U;(2) 减弱励磁磁通;(3) 改变电枢回路电阻R。对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式最好。改变电阻只能实现有级调速;减弱励磁磁通虽然能够平滑调速,但调速的范围不大,往往只是配合调压方案,在基速(额定转速)以上做小范围的弱磁升速。因此,自动控制的直流调速系统往往以改变电压调速为主。2.1.2 直流调速系统的性能指标根据各类典型生产机械对调速系统提出的要求,一般可以概括为静态和动态调速指标。静态调速指标要求电力传动自动控制系统能在最高转速和最低转速范围内调节转速,并且要求在不同转速下工作时,速度稳定;动态调速指标要求系统启动、制动快而平稳

24、,并且具有良好的抗扰动能力。抗扰动性是指系统稳定在某一转速上运行时,应尽量不受负载变化以及电源电压波动等因素的影响。一、静态性能指标1)调速范围 生产机械要求电动机在额定负载运行时,提供的最高转速与最低转速之比,称为调速范围,用符号D表示 (22)2)静差率静差率是用来表示负载转矩变化时,转速变化的程度,用系数s来表示。具体是指电动机稳定工作时,在一条机械特性线上,电动机的负载由理想空载增加到额定值时,对应的转速降落与理想空载转速之比,用百分数表示为 (23)显然,机械特性硬度越大,机械特性硬度越大,越小,静差率就越小,转速的稳定度就越高。然而静差率和机械特性硬度又是有区别的。两条相互平行的直

25、线性机械特性的静差率是不同的。对于图21中的线1和线2,它们有相同的转速降落=,但由于,因此。这表明平行机械特性低速时静差率较大,转速的相对稳定性就越差。在1000r/min时降落10r/min,只占1%;在100r/min时也降落10r/min,就占10%;如果只有10r/min,再降落10r/min时,电动机就停止转动,转速全都降落完了。由图21可见,对一个调速系统来说,如果能满足最低转速运行的静差率s,那么,其它转速的静差率也必然都能满足。图212.1.3 动态性能指标生产工艺对控制系统动态性能的要求经折算和量化后可以表达为动态性能指标。自动控制系统的动态性能指标包括对给定信号的跟随性能

26、指标和对扰动输入信号的抗扰性能指标。一、跟随性能指标在给定信号(或称参考输入信号)R(t)的作用下,系统输出量C(t)的变化情况可用跟随性能指标来描述。当给定信号表示方式不同时,输出响应也不一样。通常以输出量的初始值为零,给定信号阶跃变化下的过渡过程作为典型的跟随过程,这时的动态响应又称为阶跃响应。一般希望在阶跃响应中输出量c(t)与其稳态值的偏差越小越好,达到的时间越快越好。常用的阶跃响应跟随性能指标有上升时间,超调量和调节时间:1)上升时间在典型的阶跃响应跟随过程中,输出量从零起第一次上升到稳态值所经过的时间称为上升时间,它表示动态响应的快速性,见图22。图222)超调量 在典型的阶跃响应

27、跟随系统中,输出量超出稳态值的最大偏离量与稳态值之比,用百分数表示,叫做超调量: (24)超调量反映系统的相对稳定性。超调量越小,则相对稳定性越好,即动态响应比较平稳。 3)调节时间调节时间又称过渡过程时间,它衡量系统整个调节过程的快慢。原则上它应该是从给定量阶跃变化起到输出量完全稳定下来为止的时间。对于线性控制系统来说,理论上要到才真正稳定,但是实际系统由于存在非线性等因素并不是这样。因此,一般在阶跃响应曲线的稳态值附近,取的范围作为允许误差带,以响应曲线达到并不再超出该误差带所需的最短时间定义为调节时间,可见图22。二、抗扰性能指标一般是以系统稳定运行中,突加负载的阶跃扰动后的动态过程作为

28、典型的抗扰过程,并由此定义抗扰动态性能指标,可见图23。常用的抗扰性能指标为动态降落和恢复时间: 1)动态降落 系统稳定运行时,突加一定数值的扰动(如额定负载扰动)后引起转速的最大降落值叫做动态降落,用输出量原稳态值的百分数来表示。输出量在动态降落后逐渐恢复,达到新的稳态值是系统在该扰动作用下的稳态降落。动态降落一般都大于稳态降落(即静差)。调速系统突加额定负载扰动时的动态降落称作动态降落。 2)恢复时间 从阶跃扰动作用开始,到输出量基本上恢复稳态,距新稳态值之差进入某基准量的范围之内所需的时间,定义为恢复时间,其中称为抗扰指标中输出量的基准值。 实际系统中对于各种动态指标的要求各有不同,要根

29、据生产机械的具体要求而定。一般来说,调速系统的动态指标以抗扰性能为主。图232.2 电流、转速双闭环直流调速系统的理论分析2.2.1 双闭环调速的工作过程和原理双闭环调速系统的工作过程和原理: 电动机在启动阶段,电动机的实际转速(电压)低于给定值,速度调节器的输入端存在一个偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时则以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到等于最大给定值, 电动机以最大电流恒流加速启动。电动机的最大电流(堵转电流)可以通过整定速度调节器的输出限幅值来改变。在电

30、动机转速上升到给定转速后, 速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。对负载引起的转速波动,速度调节器输入端产生的偏差信号将随时通过速度调节器、电流调节器来修正触发器的移相电压,使整流桥输出的直流电压相应变化,从而校正和补偿电动机的转速偏差。另外电流调节器的小时间常数, 还能够对因电网波动引起的电动机电枢电流的变化进行快速调节,可以在电动机转速还未来得及发生改变时,迅速使电流恢复到原来值,从而使速度更好地稳定于某一转速下运行。2.2.2 双闭环直流调速系统的组成及其静特性一、双闭环直流调速系统的组成为了实现转速和电流两种负反馈分别起作用,可

31、在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。两者之间实行嵌套连接,如图24所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。0nnt理想启动过程图24 转速、电流双闭环直流调速系统其中:ASR-转速调节器 ACR-电流调节器 TG-测速发电机 TA-电流互感器 UPE-电力电子变换器 -转速给定电压 Un-转速反馈电压 -电流给定电压 -电流反馈电压。ASR(速度调节器)根据速度指令Un*和速度反馈Un的偏差进行调节,

32、其输出是电流指令的给定信号Ui*(对于直流电动机来说,控制电枢电流就是控制电磁转矩,相应的可以调速)。ACR(电流调节器)根据Ui*和电流反馈Ui的偏差进行调节,其输出是UPE(功率变换器件的)的控制信号Uc。进而调节UPE的输出,即电机的电枢电压,由于转速不能突变,电枢电压改变后,电枢电流跟着发生变化,相应的电磁转矩也跟着变化,Te-TL=Jdn/dt,只要Te与TL不相等转速会相应的变化。整个过程到电枢电流产生的转矩与负载转矩达到平衡,转速不变后,达到稳定。二、 双闭环直流调速系统的静特性分析图25 双闭环直流调速系统的稳态结构框图分析静特性的关键是掌握PI调节器的稳态特征,一般使存在两种

33、状况:饱和输出达到限幅值,不饱和输出未达到限幅值。当调节器饱和时,输出为恒值,输入量的变化不再影响输出,除非有反向的输入信号使调节器退出饱和,换句话说,饱和的 调节器暂时隔断了输入和输出的联系,相当于使该调节环开环。当调节器不饱和时,PI的作用使输入偏差电压U在稳态时总为零。 实际上,在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。1转速调节器不饱和这时,两个调节器都不饱和,稳态时,它们的输入偏差电压都是零,因此,= = = =由第一个关系式可得:n=从而得到图2-5所示静特性曲线的CA段。与此同时,由于ASR不饱和,可知,这就是说,CA

34、段特性从理想空载状态的Id=0一直延续到=。而,一般都是大于额定电流的。这就是静特性的运行段,它是一条水平的特性。2转速调节器饱和这时,ASR输出达到限幅值,转速外环呈开环状态,转速的变化对系统不再产生影响。双闭环系统变成了一个电流无静差的单电流闭环调节系统。稳态时:=其中,最大电流取决于电动机的容许过载能力和拖动系统允许的最大加速度,由上式可得静特性的AB段,它是一条垂直的特性。这样是下垂特性只适合于的情况,因为如果,则,ASR将退出饱和状态. 双闭环调速系统的静特性在负载电流小于时表现为转速无静差,这时,转速负反馈起主要的调节作用,但负载电流达到时,对应于转速调节器的饱和输出,这时,电流调

35、节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护.这就是采用了两个PI调节器分别形成内、外两个闭环的效果。然而,实际上运算放大器的开环放大系数并不是无穷大,因此,静特性的两段实际上都略有很小的静差,见图26中虚线。图26 双闭环直流调速系统的静特性三、各变量的稳态工作点和稳态参数计算由双闭环直流调速系统的稳态结构图可知,双闭环调速系统在稳态工作时,当两个调节器都不饱和时,各变量之间有以下关系:=上述关系表明,在稳态工作点上,转速n是由给定电压决定,ASR的输出量是由负载电流决定的,而控制电压的大小则同时取决 于n和,或者说,同时取决于 和。PI调节器输出量在动态过程中决定于输入量

36、的积分,到达稳态时,输入为零,输出的稳态值与输入无关,而是由它后面环节的需要决定的。后面需要PI调节器提供多么大的输出值,它就能提供多少,直到饱和为止。鉴于这一特点,双闭环调速系统的稳态参数计算与单闭环有静差系统完全不同,而是和无静差系统的稳态计算相似,即根据各调节器的给定与反馈值计算有关的反馈系数。转速反馈系数:= /;电流反馈系数:= /;两个给定电压的最大值、由设计者给定,受运算放大器允许输入电压和稳压电源的限制。2.3 双闭环直流调速系统的数学模型和动态性能分析2.3.1 双闭环直流调速系统的数学模型的建立双闭环直流调速系统数学模型的建立涉及到可控硅触发器和整流器的相关内容,这里仅作简

37、单介绍,具体的内容将在第三章内加以说明。全控式整流在稳态下,触发器控制电压Uct与整流输出电压Ua0的关系为:其中:A-整流器系数; -整流器输入交流电压; -整流器触发角; -触发器移项控制电压;K-触发器移项控制斜率;整流与触发关系为余弦,工程中近似用线性环节代替触发与放大环节,放大系数为:K=。绘制双闭环直流调速系统的动态结构框图如下:图27 双闭环直流调速系统的动态结构框图2.3.2 起动过程分析双闭环直流调速系统突加给定电压由静止状态起动时,转速调节器输出电压、电流调节器输出电压、可控整流器输出电压、电动机电枢电流和转速的动态响应波形过程如图28所示。由于在起动过程中转速调节器ASR

38、经历了不饱和、饱和、退饱和三种情况,整个动态过程就分成图中标明的、三个阶段。第一阶段是电流上升阶段。当突加给定电压时,由于电动机的机电惯性较大,电动机还来不及转动(n=0),转速负反馈电压,这时,很大,使ASR的输出突增为,ACR的输出为,可控整流器的输出为,使电枢电流迅速增加。当增加到(负载电流)时,电动机开始转动,以后转速调节器ASR的输出很快达到限幅值,从而使电枢电流达到所对应的最大值(在这过程中的下降是由于电流负反馈所引起的),到这时电流负反馈电压与ACR的给定电压基本上是相等的,即 式中,电流反馈系数。速度调节器ASR的输出限幅值正是按这个要求来整定的。 第二阶段是恒流升速阶段。从电

39、流升到最大值开始,到转速升到给定值为止,这是启动过程的主要阶段,在这个阶段中,ASR一直是饱和的,转速负反馈不起调节作用,转速环相当于开环状态,系统表现为恒流调节。由于电流保持恒定值,即系统的加速度为恒值,所以转速n按线性规律上升,由知,也线性增加,这就要求也要线性增加,故在启动过程中电流调节器是不应该饱和的,晶闸管可控整流环节也不应该饱和。 第三阶段是转速调节阶段。转速调节器在这个阶段中起作用。开始时转速已经上升到给定值,ASR的给定电压与转速负反馈电压相平衡,输入偏差等于零。但其输出却由于积分作用还维持在限幅值,所以电动机仍在以最大电流下加速,使转速超调。超调后,使ASR退出饱和,其输出电

40、压(也就是ACR的给定电压)才从限幅值降下来,也随之降了下来,但是,由于仍大于负载电流,在开始一段时间内转速仍继续上升。到时,电动机才开始在负载的阻力下减速,知道稳定(如果系统的动态品质不够好,可能振荡几次以后才稳定)。在这个阶段中ASR与ACR同时发挥作用,由于转速调节器在外环,ASR处于主导地位,而ACR的作用则力图使尽快地跟随ASR输出的变化。稳态时,转速等于给定值,电枢电流等于负载电流,ASR和ACR的输入偏差电压都为零,但由于积分作用,它们都有恒定的输出电压。ASR的输出电压为 ACR的输出电压为 由上述可知,双闭环调速系统,在启动过程的大部分时间内,ASR处于饱和限幅状态,转速环相

41、当于开路,系统表现为恒电流调节,从而可基本上实现理想过程。双闭环调速系统的转速响应一定有超调,只有在超调后,转速调节器才能退出饱和,使在稳定运行时ASR发挥调节作用,从而使在稳态和接近稳态运行中表现为无静差调速。故双闭环调速系统具有良好的静态和动态品质。图28 双闭环直流调速系统起动过程的电压、电流、转速波形综上所述,双闭环调速系统的起动过程有以下三个特点:(1)饱和非线形控制:随着ASR的饱和与不饱和,整个系统处于完全不同的两种状态,在不同情况下表现为不同结构的线形系统,只能采用分段线形化的方法来分析,不能简单的用线形控制理论来笼统的设计这样的控制系统。(2)转速超调:当转速调节器ASR采用

42、PI调节器时,转速必然有超调。转速略有超调一般是容许的,对于完全不允许超调的情况,应采用其他控制方法来抑制超调。(3)准时间最优控制:在设备允许条件下实现最短时间的控制称作“时间最优控制”,对于电力拖动系统,在电动机允许过载能力限制下的恒流起动,就是时间最优控制。但由于在起动过程、两个阶段中电流不能突变,实际起动过程与理想启动过程相比还有一些差距,不过这两段时间只占全部起动时间中很小的成分,无伤大局,可称作“准时间最优控制”。采用饱和非线性控制的方法实现准时间最优控制是一种很有实用价值的控制策略,在各种多环控制中得到普遍应用。2.3.3 动态抗干扰性分析一般来说,双闭环调速系统具有比较满意的动

43、态性能,对于调速系统,最重要的动态性能是抗扰性能。主要是抗负载扰动和抗电网电压扰动。1 抗负载扰动由双闭环直流调速系统的动态结构图上可以看出,负载扰动作用在电流环之后,因此,只能靠转速调节器ASR来产生抗负载扰动的作用。在设计ASR时,应要求有较好的抗扰性能指标。2 抗电网电压扰动电网电压变化对调速系统也产生扰动作用。在图27所示的双闭环系统中,由于增设了电流内环,电压波动可以通过电流反馈得到比较及时的调节,不必等它影响到转速以后才能反馈回来,抗扰性能大有改善。因此,在双闭环系统中,由电网电压波动引起的转速动态变化会小得多。2.4 调节器的工程设计方法2.4.1 PI调节器PI调节器的结构如下

44、图所式:由图可得:PI调节器比例部分的放大系数:PI调节器积分时间常数PI调节器的传递函数为:2.4.2 调节器的设计方法为了保证转速发生器的高精度和高可靠性,系统采用转速变化率反馈和电流反馈的双闭环电路主要考虑以下问题:1. 保证转速在设定后尽快达到稳速状态;2. 保证最优的稳定时间;3. 减小转速超调量。为了解决上述问题,就必须对转速、电流两个调节器的进行优化设计,以满足系统的需要。建立调节器工程设计方法所遵循的原则是:(1) 概念清楚、易懂;(2) 计算公式简明、好记;(3) 不仅给出参数计算的公式,而且指明参数调整的方向;(4) 能考虑饱和非线性控制的情况,同样给出简明的计算公式;(5) 适用于各种可以简化成典型系统的反馈控制系统。直流调速系统调节器参数的工程设计包括确定典型系统、选择调节器类型、计算调节器参数、计算调节器电路参数、校验等内容。在选择调节器结构时,只采用少量的典型系统,它的参数与系统性能指标的关系都已事先找到,具体选择参数时只须按现成的公式和表格中的数据计算一下就可以了,这样就使设计方法规范化,大大减少了设计工作量。2.4.3 型系统与型系统的性能比较 许多控制系统的开环传递函数可表示为 根据W(s)中积分

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号