《基于PLC的恒压供水系统设计1.doc》由会员分享,可在线阅读,更多相关《基于PLC的恒压供水系统设计1.doc(39页珍藏版)》请在三一办公上搜索。
1、基于PLC的恒压供水系统设计 摘 要 本文主要针对当前供水系统中存在的自动化程度不高、能耗严重、可靠性低的缺点加以研究,设计出一种在这三个方面都有所提高的PLC控制的恒压供水系统。 恒压变频供水系统是当今应用最广泛的节能型供水系统。本文通过对供水系统运行特征及工作状态的分析,阐述了系统的节能原理,介绍了系统的基本构成及特点。并从实际出发,通过对PLC,变频器,离心水泵等原理的介绍,阐述了整个系统实现的理论基础,通过具体编制PLC程序,实现了控制要求,较好的满足了工艺要求。 本文所做的研究对同类系统的研究和再开发具有一定的参考价值。关键词: 变频调速 ; 节能 ; PLC控制 Abstract
2、In this paper, the water supply system for the current degree of automation that exist in low energy consumption and serious defects of the low reliability of the research, design a kind of three areas in which the PLC has to increase the control of constant pressure water supply system. Constant pr
3、essure water supply system frequency is the most widely used energy-efficient water supply system. In this paper, the characteristics of the water supply system operation and analysis of the state on the systems energy-saving principle of the systems basic structure and characteristics. And proceed
4、from reality, through the PLC, frequency converter, the principle of centrifugal water pumps, etc., the whole system on the theoretical basis for the preparation of PLC through specific procedures, to achieve the control requirements, the better to meet the technological requirements. In this paper,
5、 the research done on similar systems in the research and further development of a certain reference value.Keywords:Frequency Control ; Energy Saving ;PLC 目 录1.恒压供水原理及工艺11.1 任务11.2 工艺要求11.3 系统的组成和基本工作原理12 PLC概述32.1 PLC组成32.1.1 PLC的输入32.1.2 PLC的输出32.1.3 PLC的控制机制33 系统硬件设计63.1 恒压供水系统的基本构成83.2 系统控制要求10
6、3.3 控制系统的I/O点及地址分配103.4 系统选型123.5 PLC模拟量模拟量控制单元的配置以及应用123.5.1 EM235模拟量工作单元性能指标133.5.2 校准及配置143.5.3 EM235的安装使用143.5.4 EM235工作程序编制153.5.5 电气控制系统原理图164系统程序设计194.1 由“恒压“要求出发的工作泵组数量控制管理194.2多泵组泵站泵组管理规范194.3 程序的结果以及程序功能的实现19参考文献32致谢341.恒压供水原理及工艺 1.1 任务 随着社会的发展和进步,城市高层建筑的供水问题日益突出。一方面要求提高供水质量,不要因为压力的波动造成供水的
7、障碍;另一方面要求保障供水的可靠性和安全性,在发生火灾时能可靠供水。针对这两方面的要求,新的供水方式和控制系统应运而生,这就是PLC控制的恒压无塔供水系统。恒压无塔供水系统包括生活用水的恒压控制和消防用水的恒压控制即双恒压系统。恒压供水保证了供水的质量,以PLC为主机的控制系统丰富了系统的控制功能,提高了系统的可靠性。1.2 工艺要求 对三泵生活/消防双恒压供水系统的基本要求是:(1)生活供水时,系统应底恒压值运行,消防供水时系统应高恒压值运行。(2)三台泵根据恒压的需要,采用“先开先停”的原则介入和退出。(3)在用水量小的情况下,如果一台泵连续运行的时间超过3H,则要切换 到下一台泵,即系统
8、具有“倒泵功能”,避免某一台泵工作时间过长。(4)三台泵在启动时要有软启动功能。1.3 系统的组成和基本工作原理 以一个三泵生活/消防双恒压无塔供水系统为例来说明其工艺过程,市网来水用高低水位控制器EQ来控制注水阀TV1,它们自动把水注满储水池,只要水位低于高水位,则自动往水箱中注水。水池的高/低水位信号也直接送给PLC,作为低水位报警用。为了保障供水的持续性,水位上下限传感器高低距离不是相差很大。生活用水和消防用水共用三台泵,平时电磁阀YV2处于失电状态,关闭消防管网,三台泵根据生活用水的多少,按一定的控制逻辑运行,使生活用水的恒压状态(生活用水底恒压值)下进行;当有火灾发生时,电磁阀YV2
9、得电,关闭生活用水管网,三台泵共消防用水使用,并根据用水量的大小,使消防供水也在恒压状态(消防用水高恒压值)下进行。火灾结束后三台泵再改为生活供水使用。 2 PLC概述2.1 PLC组成2.1.1 PLC的输入通过对继电器控制特点的介绍和最初通用汽车公司提出的要求分析。PLC要想取代继电器控制,首先要解决外部设备的直接输入问题。由于当时主要集中在开关量控制,也就是开关量(触点的开闭状态)如何直接接入PLC并被PLC所识别,对此就需要解决以下几个问题:有源接入,无源接入,绝缘问题,隔离问题和互相干扰问题。PLC就是一个计算机控制系统,在其发展过程,人们曾将计算机直接用于工业控制,但是由于以下两大
10、问题没有解决好而难以发展:一是I/O(输入/输出)问题,计算机不能直接和工业现场设备连接现在了应用;二是计算机的I/O功能,开关逻辑处理不够丰富和强大。现在的PLC成功的解决了这两个方面的问题,可以让PLC和外部设备直接进行物理的连接。计算机的内部提供了丰富的从位逻辑到双字运算的强大的运算功能,使其能够完成复杂的控制功能,这也是PLC能够迅速发展的原因。2.1.2 PLC的输出 输出问题主要是接点的驱动能力问题,或者说是带负载能力和输出方式的问题。输出动作次数的限制,是保证PLC的输出接点能否驱动接触器、电磁阀这样的控制执行元器件的问题至少要能直接驱动中间继电器。现在的PLC产品已经完全有能力
11、驱动这些元器件,并提供了多种输出方式且动作次数可保证万次无故障的产品。2.1.3 PLC的控制机制 PLC已经完全取代继电器控制系统。只要对其控制机制有了准确的理解,才能对其持续的开发并创造性的使用它。I/O电路已经保证了PLC与现场设备的直接连接,并在内部寄存器存储了这些状态。但是,为了取代继电器的控制,更重要的是如何组织和使用这些开关量,从而达到软件程序代替硬件连线的目的。在这里通过对继电器的控制的电路的特点的介绍,已经知道继电器控制电路的特点在于各个控制单元是否动作是由其接点条件控制的,并不受其前后位置的影响。同一时刻,可有多个不同的控制单元继电器的动作(翻转),控制的结果、逻辑动作顺序
12、也是由接点条件来控制的。这于计算机顺序执行的工作的特点是矛盾的。主要体现在:一是乱序,只要条件满足就执行;而另一个是顺序执行。PLC充分利用了计算机存储程序的思想和高速的特点,采用了控制系统中的离散控制方式,使它的控制能够完全代替继电器的控制。具体的说就是将连续的控制用离散的控制代替,如下式: Y(n)=f(x(n-1),y(n-1) 式中,Y(n)为某一时间段的输出值; Y(n-1)为上一时间段的输出值; X(n-1)为上一时间段某一时刻的输入值; F为他们应满足的控制关系。即某一时间段的输出完全取决于上一时间某一时刻的输入和上一时间段的输出。 至于上一时间段的输出,在参加计算的时候,只是存
13、储在映像寄存器中的输出结果,执行运算过程中并不修改端子的输出值。真实的输出已表现在端子的接点上,并要保持一个时间段,也就是采取集中输出的方式,在计算的过程中完全可以使用或修改其映像寄存器中的值而不会对先阶段的输出产生影响。这样只要时间段足够短,并且PLC周而复始的运行着就完全可以模仿继电器的控制并且取代它。 由于采用集中I/O的思想,其I/O状态存储在寄存器中,可以充分发挥计算机的强大逻辑家能力,以完成更复杂的控制功能。 如图1所示,PLC与通用计算机没有什么区别,只是一台增强了I/O功能的可与控制对象方便连接的计算机。其完成控制的实质是按一定算法进行I/O变换,并将这个变换物理实现,应用与工
14、业现场。(1)输入寄存器输入寄存器可按为进行寻址,每一为对应一个开关量,其值反映了开关量的状态,其值的改变由相互如开关量驱动,并保持一个扫描周期。CPU可以读其值,但是不可以写或进行修改。(2)输出寄存器输出寄存器的每一位都表明了PLC在下一个时间段的输出值,而程序循环执行开始时的输出寄存器的值,表明的是上一时间段的真实输出值,在程序执行过程中,CPU可以读其值,并作为条件参加控制,还可以修改其值,而中间的变换仅仅影响寄存器的值。只有程序执行到一个循环的尾部时的值才影响下一时间段的输出,即只有最后的修改才对输出接点的真实值产生影响。(3)存储器 存储器分为系统存储器和用户存储器。系统存储器存储
15、的是系统程序,它是由厂家开发固化好了的,用户不能修改,PLC要在系统程序的管理下运行。用户存储器中存放的是用户程序和运行所需要的资源,I/O寄存器的值作为条件决定着存储器中的程序如何被执行,从而完成复杂的控制功能。(4)CPU单元CPU单元控制着I/O寄存器的读、写时序,以及对存储器单元中的程序的解释执行工作,是PLC的大脑。(5)其他单元接口其他单元接口用语提供PLC与其他设备和模块进行连接通信的物理条件图1 PLC的组成3 系统硬件设计学习PLC的硬件系统、指令系统和编程方法以后,对于设计一个较大的PLC控制系统时,要全面考虑多种因素,不管所设计的控制系统的大小,一般都要用以下设计步骤来进
16、行系统设计。随着PLC功能的不断完善和提高,PLC几乎可以完成工业领域的所以控制任务。但是PLC还是有最适合它的应用场合,所以接到一个控制任务以后,要分析被控对象的控制过程和要求,看看用什么控制设备来完成该任务最合适。其实现在的可编程不仅处理开关量,而且对模拟量的处理能力也很强。所以在很多情况下也可以取代工业控制计算机(IPC)作为主控器控制对象以及控制装置确定后,还要进一步确定PLC的控制范围。一般来说,能够反映生产过程的运行情况,能用传感器直接测量的参数,控制逻辑复杂的部分都由PLC控制来完成。当某一个控制任务决定由PLC来完成后。选择PLC就成为最重要的事情。一方面是选择多大容量的PLC
17、,另一方面是选择什么公司的PLC以及外设。对第一个问题,首先要对控制任务进行详细的分析,把所有的I/O点找出来,包括开关量I/O模拟量I/O以及这些I/O点的性质。I/O点是性质主要是指他们是直流信号还是交流信号,它们的电源电压。控制系统输出点的类型非常关键,如果它们之中既有交流220V的接触器、电磁阀,又有直流24V的指示灯,则最后选用的PLC的输出点有可能大于实际点数。因为PLC的输出点一般是几个一组共用一个公共端,这一组的输出只能有一个电源的种类和等级。对于第二个问题,则有以下几个方面要考虑:(1)功能方面 所有PLC一般都具有常规的功能,但是对于某些特殊要求,就要知道所选用的PLC是否
18、有能力完成控制任务。如对PLC与PLC、PLC与智能仪表以及上位机之间灵活方便的通讯要求;或对PLC的计算速度、用户程序容量有特殊要求的;或对PLC的位置控制有特殊要求等。这就要求用户对市场上流行的PLC品种有一个详细的了解,以便做出正确的选择。(2)价格方面 不同厂家的PLC产品价格相差很大,有些功能类似、质量相当、I/O点数相当的PLC的价格能相差40%以上。在使用PLC较多的情况下,这样的差价必须是需要考虑的。(3)个人喜好方面 有些工程技术人员对某种品牌的PLC熟悉,所以一般比较喜欢使用这种产品。 图8 PLC控制系统设计步骤输入/输出信号在PLC接线端子上的地址分配是进行PLC控制系
19、统设计的基础。对软件设计来说,I/O地址分配以后才可以进行编程;对控制柜和PLC的外围接线来说,只有I/O地址确定以后,才可以绘制电气接线图、装配图,让装配人员根据线路图和安装图安装控制柜。3.1 恒压供水系统的基本构成恒压供水泵站一般需设多台水泵及电机,这比设单台水泵及电机节能而可靠。配单台电机和水泵时,它们的功率必须足够的大,在用水量少十开一台大电机肯定是浪费,电机选小了用水量大时供水不足。而且水泵和电机都有维修的时候,备用泵是必要的。恒压供水的主要目标是保持管压网水呀的恒定,水泵电机的转速套跟随用水量的变化而变化,这就要用变频器为水泵供电。这也有两种配置方式,一是为每台水泵电机配一台变频
20、器,这当然方便,电机与变频器间不需要切换,但是购买变频器的费用较高。另一种方案是数台电机陪一台变频器,变频器与电机见可以切换,供水运行时,一台水泵变频运行,其余水泵共频运行,以满足不同用水两的需求。下图为恒压供水泵站的示意图。如图9所示,图中压力传感器用于检测管网中的水压,常装设在泵站的出水口。当用水量大时,水压降低;用水量小时,水压升高。水压传感器将水压的变化转变为电流或电压的变化送给调节器。图9 变频恒压供水站的基本组成调节器是一种电子装备,在系统中完成以下几种功能:(1)设定水管压力的给定值,恒压供水水压的高低依需要设定。供水距离越远,用水地点越高,系统所需供水压力越大。给定值即是系统正
21、常工作时的恒压值,另外有些供水系统可能有多种供水目的,如将生活用水与消防用水共用一个泵站,水压的设定值可能不只一个,一般消防用水的水压要高一些,调节器具有给定值设定功能,可以以数字量进行设定,也有的调节器以模拟量方式设定。(2)接受传感器送来的管网水压的实测值。管网实测水压回送到泵站控制装置称为反馈,调节器实反馈的接受点。(3)根据给定值和实测值的综合,依一定的调节规律发出系统调节信号。调节器接受了实测水压的反馈信号后,将它与给定值比较,得到给定值与实测值之差。如果给定值大于实测值,说明系统水压低于理想水压,要加大水泵电机的转速,如果水压高于理想水压,要降低水泵电机的转速。这些都是由调节器的输
22、出信号控制。为了实现调节的快速性与系统的稳定性,调节工作中还有个调节规律的问题,传统调节器的调节规律多是比例-积分-微分调节,俗称PID调节。调节器的调节参数,如P、I、D参数均是可以由使用者设定的,PID调节过程视调节器的的内部构成由数字式调节及模拟量调节两类,以微型计算机调节器多为数字调节器。调节器的输出信号一般式模拟信号,420mA变化的电流信号或010V间变化的电压信号。信号的量值与前面提到的差值成正比,用于驱动执行设备工作。下面以一个三泵生活/消防双恒压无塔供水系统为例来说明其工艺过程,如图10所示,市网来水用高低水位控制器EQ来控制注水阀TV1,它们自动把水注满储水池,只要水位低于
23、高水位,则自动往水箱中注水。水池的高/低水位信号也直接送给PLC,作为底水位报警用。为了保障供水的持续性,水位上下限传感器高低距离不是相差很大。生活用水和消防用水共用三台泵,平时电磁阀YV2处于失电状态,关闭消防管网,三台泵根据生活用水的多少,按一定的控制逻辑运行,使生活用水的恒压状态(生活用水底恒压值)下进行;当有火灾发生时,电磁阀YV2得电,关闭生活用水管网,三台泵共消防用水使用,并根据用水量的大小,使消防供水也在恒压状态(消防用水高恒压值)下进行。火灾结束后三台泵再改为生活供水使用图10 生活消防双恒压供水系统构成图3.2 系统控制要求对三泵生活/消防双恒压供水系统的基本要求是:(1)生
24、活供水时,系统应底恒压值运行,消防供水时系统应高恒压值运行;(2)三台泵根据恒压的需要,采用“先开先停”的原则介入和退出;(3)在用水量小的情况下,如果一台泵连续运行的时间超过3H,则要切换到下一台泵,即系统具有“倒泵功能”,避免某一台泵工作时间过长;(4)三台泵在启动时要又软启动功能;(5)要有完整的报警功能;(6)对泵的操作要有手动控制功能,手动只在应急或检修时临时使用。3.3 控制系统的I/O点及地址分配PLC要能够识别和接受描述现场设备的开关量,同时要能够发出控制信号控制一些执行设备,以便对现场设备进行控制。PLC是通过I/O单元完成此工作的。I/O单元是PLC与外部设备相互联系的通道
25、,能输入/输出多种形式和驱动能力的信号,以实现被控设备与PLC的I/O接口之间的电平转换、电气隔离、串/并转换、A/D与D/A转换等功能。输入单元接受现场设备向PLC提供信号,包括人为的控制信号和能描述现场状态的开关量信号,例如由按钮、限位开关、继电器触点、接近开关、拨码器等提供的开关量。这些信号经过输入电路进行滤波、光电隔离、电平转换等处理后,变成CPU接受和处理的信号。输出单元将经过CPU处理的弱电信号通过光电隔离、功率放大等处理,转换成外部设备所需要的强电信号,以驱动各种执行元器件,如接触器、电磁阀、电磁铁、调节阀、调速装置等。根据图10 及以上控制要求统计控制系统的输入输出信号的名称、
26、代码及地址编号如下表所示。水位上下限信号分别位I0.1、I0.2,它们在水淹没时为0,露出时为1。表1 输入输出点代码及地址编号 名 称代 码地址编号 输 入 信 号手动和自动消防信号SA1I0.0水池水位下限信号SLLI0.1水池水位上限信号SLHI0.2变频器报警信号SUI0.3消铃按钮SB9I0.4试灯按钮SB10I0.5远程压力表模拟量变压值UAIW0输 出 信 号 1#泵工频运行接触器及指示灯KM1,HL1Q0.01#泵变频运行接触器及指示灯KM2,HL2Q0.12#泵工频运行接触器及指示灯KM3,HL3Q0.22#泵变频运行接触器及指示灯KM4,HL4Q0.33#泵工频运行接触器及
27、指示灯KM5,HL5Q0.43#泵变频运行接触器及指示灯KM6,HL6Q0.5生活/消防供水转换电磁阀YV2Q1.0续表1 输入输出点代码及地址编号输 出 信 号水池水位下限报警指示灯HL7Q1.1变频器故障报警指示灯HL8Q1.2火灾报警指示灯HL9Q1.3报警电铃HAQ1.4变频器频率复位控制KAQ1.5控制变频器频率用电电压UFAQW03.4 系统选型从上面分析可知,系统共有开关量输入点6个、开关量输出点12个;模拟量输入点1个、模拟量输出点1个。如果选用CPU 224 PLC,也需要扩展单元;如果选用CPU266 PLC则价格较高,浪费较大。参照S7 200的产品目以及市场实际价格,选
28、用主机为CPU222(8入/6继电器输出)一台,加上一台扩展模块EM222(8继电器输出),再扩展一台模拟量模块EM235(4AI/1AO)。这样的配置是最经济的。整个PLC系统的配置如图11主机单元CPU222AC/DC继电器模拟量单元EM2354AI/1AO扩展单元EM2228点继电器图11 PLC 系统组成S7-200PLC是德国西门子公司生产德一种小型PLC,其许多功能达到大、中型PLC的水平,而价格却和小型PLC一样,因此,它一经退出,即受到了广泛的关注。特别是S7-200CPU22*系列PLC。由于它具有多种功能模块和人机界面(HMI)可供选择,所以系统的集成非常方便,并且可以很容
29、易的组成PLC网络。3.5 PLC模拟量控制单元的配置以及应用PLC的普通输入输出端口均为开关量处理端口,了使PLC能完成模拟量的处理,常见的方法是为整体式PLC加配模拟量扩展单元。模拟量扩展单元可将外部模拟量转化为PLC可处理的数字量及将PLC内部运算结果数字量转换为机外可以使用的模拟量。模拟量扩展单元有单独用于模/数转换的,单独用于数/转换的,也兼有模/数和数/模两种功能的,以下介绍S7-200系列PLC的模拟量扩展模块EM235,它具有四路模拟量输入及一路模拟量输入,可以用于恒压供水控制中。3.5.1 EM235模拟量工作单元性能指标 表2 模拟量扩展模块EM235输入/输出技术规范输
30、入 技 术 规 范输 出 技 术 规 范最大输出电压30VDC隔离(现场到逻辑)无最大输入电压32mA信号范围 电压输出 电流输出10020 mA输入滤波衰减-3dB,3.1kHz分辨率12位A/D转换器隔离否分辨率,满量程 电压 电流12位11位输入类型差分输入范围电压单极性010V,05V01V,0500mV电压电流-32000+320000+32000电压双极性电流0100Mv,050mV10V,5V,2.5V1V,500mV,250Mv100mV, 50mV, 25mv020mA精度最差情况055电压输出电流输出2%满量程2%满量程精度最差情况055电压输出电流输出典型,25电压输出电
31、流输出2%满量程2%满量程5%满量程5%满量程输入分辨率AD转换时间250s模拟输入阶跃响应1.5 mS到95%共模抑制4dB,DC 到60Hz共莫电压信号电压加共加模电压12V24VDC电压范围20.428.8V设置时间电压输出电流输出100s2ms数据字格式双极性,满量程单极性,满量程-32000+32000032000 为能适用各种规格的输入、输出两,模拟量处理模块都设计成可编程,而转换生成的数字量一般具有固定的长度及格式。模拟量输出则希望将一定范围的数字量转换为标准电流量或标准电压量以方便与其他控制接口。上表中,输入、输出信号范围栏给出了EM235的输出、输入信号规格,以供选用。3.5
32、.2 校准及配置模拟量模块在接入电路工作前需完成配置及校准,配置指根据实际需接入的信号类型对模块进行一些设定。校准可以简单的理解为仪器仪表使用前的调零以及调满度。3.5.3 EM235的安装使用 (1)根据输入信号的类型及变化范围设置DIP开关,完成模块的配置工作。必要时进行校准工作。 (2)完成硬件的接线工作。注意输入、输出信号的类型不同,采用不同的接入方式。为防止空置端对接线端的干扰,空置端应短接。接线还应注意传感器的线路尽可能短,且应使用屏蔽双绞线,要保证24VDC传感器电源无噪声、稳定可靠。(3)确定模块安装入系统时的位置,并由安装位置确定模块的编号。S7-200扩展单元安装时在主机的
33、右边依次排列,并从模块0开始编号。模块安装完毕后,将模块自带的接线排插入主机上的扩展总线插口。(4)为了在主机中进行输入模拟量转换后数字处理及为了输出需要在模拟量单元中转换为模拟量的数字量,要在主机中安排一定的存储单元。一般使用模拟量输入AIW及模拟量输出AQW单元安排由模拟量模块送来的数字量及待入模块转变为模拟量输出的数字量。而在主机的变量存储区V区存放处理产生的的中间数据。3.5.4 EM235工作程序编制EM235的工作程序编制包括以下的内容:(1)设置初始化主程序。在该子程序中完成采样次数饿预置顶及采样和单元清零的工作,为开始工作做好准备。(2)设置模块检测子程序。该子程序检查模块的连
34、接的正确性以及模块工作的正确性。(3)设置子程序完成采样以及相关的计算工作。(4)工程所需的有关该模拟量的处理程序。(5)处理后模拟量的输出工作。S7-200PLC硬件系统的配置方式采用整体式和积木式,即主机包含一定数量的输入/输出(I/O)点,同时还可以扩展I/O模块和各种功能的模块。一个完整的系统组成如图编程工具功能模块扩展模块CPU主机通讯设备人机界面图12 S7-200 PLC 系统组成(1)基本单元 基本单元(Basic Unit)有时又称CPU模也有的称之为主机或本机。它包括CPU、存储器、基本输入/输出点和电源等,是PLC的主要部分。实际上它就是一个完整的控制系统,可以单独完成一
35、定的控制任务。(2)扩展单元 主机I/O点数量不能满足控制系统的要求时,用户可以根据需要扩展各种I/O模块,所能连接的扩展单元的数量和实际所能使用的 I/O点数时由多种因素共同决定的。(3)特殊功能模块 当需要完成某些特殊功能的控制任务,需要扩展功能模块。它们是完成某些特殊控制任务的一些设置。(4)相关设备 相关设备是为了充分和方便地利用系统的硬件和软件资源而开发和使用的一些设备,主要有编程设备、人机操作界面和网络设备等。(5)工业软件 工业软件是为了更好地管理和使用这些设备而开发的与之相配套的程序,它主要由标准工具、工程工具、运行软件和人机借口软件等几大类构成。EM235安装使用(1)根据输
36、入信号的类型以及范围设置DIP开关,完成模块的控制工作。(2)完成硬件的接线工作。(3)确定模块安装入系统时的位置,并由按装位置确定模块的编号。(4)为了主机中进行输入模拟量转换后数字量以及待送入模块转变为模拟量输出的数字量。S7-200 PLC的电源电压有(20.428.8)VDC和(85264)VAC两种,主机上还集成了24V直流电源,可以直接用与连接传感器和执行机构。它的输出类型有晶体管(DC)、继电器(DC/AC)两种输出方式。它可以用普通输入端子扑捉比CPU扫描周期更快的脉冲信号,实现高速记数。2路最大可达20kHz的高频脉冲输出,可用以驱动步进电机和伺服电机以便实现准确定位任务。可
37、以用模块上的电位器来改变它对应的特素积存器的数值可以实现更改程序应用中的一些参数,如定时器/计数器的设定值过程量的控制参数等。3.5.5 电气控制系统原理图电气系统控制原理图包括主电路图、控制电路图以及PLC外围接线图。(1)主电路图如下图13所示为电控系统主电路图。三台电机分别为M1、M2、M3。接触KM1、KM3、KM5分别控制M1、M2、M3的工频运行;接触器KM2、KM4、KM6分别控制M1、M2、M3的变频运行,FR1、FR2、FR3分别为三台水泵电机过载保护用的热继电器;QS1、QS2、QS3、QS4分别为变频器喝三台水泵电机主电路的隔离开关;FU1为主电路的熔断器,VVVF为简单
38、的一般变频器。 图13 电控系统主电路 (2)控制电路图图14所示电控系统控制电路图。图中SA为手动/自动转换开关,SA打在1的位置为手动控制状态;打在2的状态为自动控制状态。手动运行时,可用按钮SB1SB2控制三台泵的启/停和电磁阀YV2的通/断;自动运行时,系统在PLC程序控制下运行。图中的HL10为自动运行状态的电源指示灯。对变频器频率进行复位时只提供一个干触点信号,由于PLC为4个输出点为一组共用一个COM端,而本系统又没有剩下单独的COM端输出组,所以通过一个中间继电器KA的触点对变频器进行复位控制。图中的Q0.0Q0.5及Q1.0Q1.5为PLC输出继电器触点,它们旁边的4、6、8
39、等数字为接线编号,可结合PLC外围接线图一起读图。 图14 电控系统控制电路4系统程序设计硬件条件确定后,系统得控制功能主要通过软件实现,结合前述泵站的控制要求,对泵站软件设计分析如下:4.1 由“恒压”要求出发的工作泵组数量控制管理前面已经说过了,为了恒定水压,在水压降落时要升高变频器的输出频率,且在一台泵不能满足要求时,需启动第2台或第3太泵。判断需启动新泵的标准是变频器的输出频率达到设定的上限值。这一功能可以同过比较指令来实现。为了判断变频器的工作频率达到上限的确定性,应该滤去偶然的频率波动引起的频率达到上限情况,在程序中考虑采取时间滤波。4.2多泵组泵站泵组管理规范由于变频器泵站希望每
40、一次启动电机都为软启动,又规定各台水泵必须交替使用,多泵组泵站泵组的投运要有一个管理规范。控制要求中规定任意一台泵连续运行时间不得超过3h,因此每次需要启动新泵或切换变频泵时,以新运行泵为变频泵是合理的。具体的操作时,将现行运行的变频泵从变频器上切除,并接上工频电源运行,将变频器复位并用于新运行泵的启动。除此之外,泵组管理还有一个问题就是泵的工作循环控制,这里我们使用泵号加1的方法来实现变频泵的循环控制(3加1等于零),用工频泵的总数结合泵号实现工频泵的轮换工作。4.3 程序的结果以及程序功能的实现由于PLC在恒压供水系统中的功能比较多,本程序可分为3部分:主程序、子程序和中断程序。系统的一些
41、初始化的工作放在初始化子程序中完成,这样可以节省扫描时间。主程序的功能最多,如泵切换信号的生成、泵组接触器逻辑控制信号的综合以及报警处理都在主程序。逻辑运算及报警处理等放在主程序。利用定时器中断功能实现PID控制的定时采样及输出控制。生活供水时系统设定值为满量程的70%,消防供水时系统设定值为满量程的90%。在本系统中,只是用比例(P)和积分(I)控制,其回路增益和时间常数可以通过工程计算初步确定,但还要进一步调整以达到最优控制效果。初步确定的增益时间常数为增益采样时间积分时间程序中使用的PLC元器件及其功能如下表 表3 程序中使用的元器件及功能器件地址 功能器件地址 功能VD100过程变量标
42、准化值T38工频泵减泵滤波时间控制VD104压力给定值T39工频/变频转换逻辑控制VD108PI计算值M0.0故障结束脉冲信号VD112比例系数M0.1泵变频启动脉冲VD116积分时间M0.3复位当前变频运行泵脉冲VD120积分时间M0.4复位当前变频运动泵脉冲VD124微分时间M0.5当前泵工频运动启动脉冲 续表3 程序中使用的元器件及功能功能器件地址功能VD204变频起运动频率下限值M0.6新泵变频启动脉冲VD208生活供水变频器运动频率上限值M2.0泵工频/变频转换逻辑控制VD212消防供水变频器运动频率上限值M2.1泵工频/变频转换逻辑控制VD250PI调节结果存储单元M2.2泵工频/
43、变频转换逻辑控制VD300变频工作泵的泵号M3.0故障信号总汇VD301工频运行的泵的总台数M3.1水池水位下限故障逻辑VD310倒泵时间存储器M3.2水池水位下限故障消铃逻辑T33工频/变频转换逻辑控制M3.3变频器故障消铃逻辑T34工频/变频转换逻辑控制M3.4火灾消铃逻辑T37工频泵增泵滤波时间控制 双恒压供水系统的梯形图程序以及程序注释如下图。对该程序有几点说明:(1)因为程序较长,所以读图时请按照网络标号的顺序进行;(2)本程序的控制逻辑设计针对的是较少的泵数供水系统。 网络4 变频器上限时增泵滤波IN TONPT I0.0 VD250 .M0.1 T37 =D VD212 +50 VD250 I0.0 =D VD208 网络5 符合泵条件时,工频泵运行数加1 T37 VB301 =P PINC-BEN ENOIN OUT OUT VB301 VB301网络6 频率下限时减泵滤波