《绘未补偿系统根轨迹课件.ppt》由会员分享,可在线阅读,更多相关《绘未补偿系统根轨迹课件.ppt(58页珍藏版)》请在三一办公上搜索。
1、CH.9 Design via Root Locus,Figure 9.1a.possible design point via gain adjustment(A)design point that cannot be met via gain adjustment(B);需補償器設計,9.1 Introduction,Figure 9.1a.possible design point via gain adjustment(A)design point that cannot be met via gain adjustment(B);,Figure 9.1(b)responses fro
2、m poles at A and B,9.1 Introduction,補償器種類Figure 9.2 Compensationtechniques:a.cascade;b.feedback,9.2節:design of cascade compensation to improve ess9.3節:design of cascade compensation to improve 暫態反應9.4節:design of cascade compensation to improve both ess and 暫態反應9.5節:design of feedback compensation,9.
3、2 cascade compensation to improve steady-state error,改善 ess 補償器3種 1/S:idea integral compensator 理想積分器 ess=0 亦變 transient response Fig.9.3b(i.e.變根軌跡圖)K1+K2/S:PI controller(Proportional-plus-Integral)ess=0 可不變 transient response Fig.9.3c(S+Zc)/(S+Pc):Pc Zc Lag Compensator ess 可不變 transient response,Fi
4、gure 9.3,a.root locus,b.not on the root locus with 1/S compensator added,此設計已無從獲致系統 A,補償器 1/S:idea integral compensator ess=0 system type 增 1 ess=finite ess=0(缺點 active network)(缺點 變transient response),Figure 9.3 c.on root locus with PI compensator added當 a 甚小 0不變 transient response,PI controller 補償
5、,(S+a)/S:PI controller(Proportional-plus-Integral)ess=0 system type 增 1 可不變 transient response 當 a 甚小 Fig.9.3c(缺點 active network)(不變transient response),補償器(S+Zc)/(S+Pc):Pc Zc Lag Compensator暫態反應 okay 希望調降穩態誤差,暫態反應 okay 維持P點;Zc Pc 控制器角度貢獻 0,Figure 9.4 Closed-loop system for Example 9.1:設計目標:希望 ess=0;
6、不變 transient response(下頁說明控制器選擇),before compensation,after PI compensation,改善 ess 補償器3種(控制器選擇)1/S:idea integral compensator 理想積分器 ess=0 亦變 transient response Fig.9.3b(i.e.變根軌跡圖)K1+K2/S:PI controller(Proportional-plus-Integral)ess=0 可不變 transient response Fig.9.3c(S+Zc)/(S+Pc):Pc Zc Lag Compensator e
7、ss 可不變 transient response,Figure 9.5Root locus for uncompensated system of Fig.9.4(a)3階系統,Figure 9.6Root locus for compensatedsystem of Figure 9.4(b),Example 9.1,Figure 9.7 time response PI compensated system response and the uncompensated system response of Example 9.1,設計目標:ess=0 不變 transient respo
8、nse,Figure 9.8PI controller,1/11,1.未補償系統=0.174 根軌跡決定系統位置2.ess降低10倍 先求未補償系統的 ess,Uncompensated system先畫根軌跡 找出系統現況,2/11,Uncompensated system 找未補償系統的穩態誤差,e()=1/(1+Kp)=0.108 Kp=lims0 G(s)=164.6/20=8.23,3/11,改善 ess 補償器3種(控制器選擇)4/11 1/S:idea integral compensator 理想積分器 ess=0 亦變 transient response Fig.9.3b(
9、i.e.變根軌跡圖)K1+K2/S:PI controller(Proportional-plus-Integral)ess=0 可不變 transient response Fig.9.3c(S+Zc)/(S+Pc):Pc Zc Lag Compensator ess 可不變 transient response,5/11,e()=1/(1+Kp)=0.108 Kp=lims0 G(s)=164.6/20=8.23 ec()=0.0108由Gc(s)調整,7/11,Uncompensated system,Figure 9.12 Compensated system of Figure 9.
10、11 8/11,ec()=0.0108=1/(1+Kpc)Kpc=lims0 Gc(s)G(s)=lims0 Gc(s)Kp=lims0 Gc(s)8.23=91.593 lims0 Gc(s)=Zc/Pc=11.132Gc(s)=(s+Zc)/(s+Pc)取 Pc=0.01 Zc=0.111,Table 9.1Predicted characteristics of uncompensated and lag-compensated systems for Example 9.2,9/11,Figure 9.13Step responses of uncompensated and lag-
11、compensated systems forExample 9.2 10/11,Figure 9.14Step responses of the system for Example 9.2 lag compensator 更趨近原點 反應較慢 最終之ess不變 11/11,執行 Lag compensation 的相關公式,9.3 Improving Transient Response via Cascade Compensation,改善 暫態反應 補償器3種 S:pure differentiator 純微分器 S+Zc:PD controller(Proportional-plus
12、-Derivative)(S+Zc)/(S+Pc):Pc Zc Lead Compensator 超前補償器,Figure 9.15 Using PD compensation(S+Zc)改變暫態反應%OS不變 1/3a.uncompensated;pensator zero at 2;pensator zero at 3;pensator zero at 4,Figure 9.16 time response 2/3 Uncompensated system and ideal derivative compensation solutions from Table 9.2,Table 9.
13、2Predicted characteristics for the systems of Figure 9.15 3/3,Example 9.3:S+Zc:PD controller Figure 9.17Feedback control system 1/7,設計目標:補償後系統%OS=16%i.e.=0.504 tsc=ts/3,Figure 9.18 Example 9.3 Root locus for uncompensated system 2/7,先求未補償系統位置%OS=16%=0.504 次求未補償系統 ts ts=4/(n)=4/1.205=3.32,Figure 9.18
14、 Example 9.3 Root locus for uncompensated system 2/7,Figure 9.19 Compensated dominant pole superimposed over the uncompensated root locus for Example 9.3 3/7,希望補償後 dominant poles=-3.613 j6.192 Gc(s)G(s)=1800 目標設計 Gc(s)=S+Zc PD controller,希望補償後 tsc=3.32/3=1.107(n)c=3.613%OS 不變 補償後 dominant poles=-3.6
15、13 j6.192,Figure 9.20 4/7Evaluating the location of the compensating zero for Example 9.3,希望之角度補償 S+Zc=1800 G(s),Figure 9.21Root locus for the compensated system of Example 9.3 5/7,Figure 9.22 time response Uncompensated and compensated system step responses ofExample 9.3 6/7,Table 9.3Uncompensated
16、and compensated system characteristics for Example 9.3 7/7,Figure 9.23PD controller S+Zc,Example 9.4 Lead compensator design(S+Zc)/(S+Pc):Pc Zc,設計目標:補償後系統%OS=30%i.e.=0.358tsc=ts/2Figure 9.26 uncompensated and compensated dominant poles,kG(s)=-1800,目標 Gc(s)+kG(s)=-1800 Gc(s)=(S+Zc)/(S+Pc)=c 超前控制器設計 選
17、擇 Lead compensator 貢獻的角度,Figure 9.25Three of the infinite possible lead compensator solutions Lead compensator 貢獻的角度,(S+Zc)/(S+Pc):Pc Zc(S+Zc)/(S+Pc)=c 正值 超前控制器,目標 Gc(s)G(s)=1800 超前控制器設計 選擇 Lead compensator 貢獻的角度 Gc(s)=(S+Zc)/(S+Pc)=c,Table 9.4 Comparison of lead compensation designs for Example 9.4
18、,Which is the best design?,系統階數?是否有2個主要極點?是否有零點?能否抵消?比較規格達成度 確認最佳設計,Figure 9.28Compensated system root locus(which is this design?),Figure 9.29Uncompensated system and lead compensation responses forExample 9.4,9.4 design of cascade compensation to improve both ess and 暫態反應,improve both 暫態反應 firstth
19、en improve essExample 9.5 自修,改善 ess 補償器3種 1/3 1/S:積分器 ess=0(S+a)/S:PI 控制器 ess=0(S+Zc)/(S+Pc):Pc Zc Lag Compensator ess 控制器設計原則:選 pole,zero 近原點,維持暫態反應不變改善 暫態反應 補償器3種 S:微分器 S+Zc:PD 控制器(S+Zc)/(S+Pc):Pc Zc Lead Compensator同時改善 暫態反應 和 ess PID 控制器:(S+Zc)(S+a)/S Lag-Lead 補償器:(S+Zc)/(S+Pc)Lead(S+Zc)/(S+Pc)L
20、ag 設計原則:先調暫態反應 再調穩態誤差,1.繪未補償系統根軌跡a.根軌跡條數=3%OS=20%i.e.=0.456b.實軸上根軌跡c.漸近線(3 zeros at),Ex.9.6 Fig.9.37%OS=20%i.e.=0.456Tsc=Ts/2 Ts=4/(n)essc=ess/10,kGH(s)=,=-16/3,=/3;5/3,2/3,1.繪未補償系統根軌跡d.Breakaway point 1+kGH(s)=0 k(s)=-1/GH(s)dk/ds=0 s=-2.43;-8.24(不適用)e.trial-and-error GH(s)=-1800 find未補償系統 at s=-1.
21、794 j 3.501 kGH(s)=1 k=192.12.先調暫態反應f.補償後系統位置 Ts=4/(n)=4/1.794 Tsc=Ts/2(n)c=2(1.794)補償後系統 at s=-3.588 j 7.003,3/3,4/5,2.先調暫態反應 g.Lead 補償器 GcL(s)設計 補償後系統 at s=-3.588 j 7.003 GcL(s)角度貢獻 GcLGH(s)=-1800 GcL(s)=-1800-GH(s)=-1800(-164.650)=-15.350 GcL(s)=(S+Zc)/(S+Pc)Pc Zc 選 Zc=6 Pc=29.1,k GcL(s)GH(s)=1 k
22、=1977,3.後調穩態誤差 essc=ess/10 ess=1/Kv Kv=lims0 skGH(s)=192.1/60 ess=1/Kv=60/192.1 h.Lag 補償器 GcLag(s)設計 經 Lead 補償後系統 at s=-3.588 j 7.003,Lag 補償器 需維持 system at s=-3.588 j 7.003 且降 essc=ess/10=60/1921 k GcLag(s)GcLGH(s)Type1系統 GcLag(s)=(S+Zc)/(S+Pc)Pc Zci.e.Kvc=lims0 s GcLag(s)kGcLGH(s)=1921/60 lims0 GcLag(s)=(Zc/Pc)(1977/291)=1921/60,