《一元一次方程复习提纲概要.doc》由会员分享,可在线阅读,更多相关《一元一次方程复习提纲概要.doc(10页珍藏版)》请在三一办公上搜索。
1、 一元一次方程复习提纲一、 一元一次方程的定义1.方程中只含有 个未知数,未知数的次数都是 ,这样的方程叫做一元一次方程。如:3x+1=0,6x+5=7.注:一元一次方程的分母中不含有未知数,不是一元一次方程。2.使方程左右两边的值相等的未知数的值,叫做方程的解。练习:1.如果是关于的一元一次方程,那么的值是多少?2. 已知是关于的一元一方程,试求代数式的值。二、 等式的性质等式的性质1:等式两边同时加(或减)同一个数(或式子),结果仍相等。如果。等式的性质2:等式两边同乘同一个数,或除以同一个不为0的数,结果仍相等。如果练习1. 如果之间的关系是 。2. 已知,利用等式的基本性质,求的值三、
2、解一元二次方程解一元二次方程步骤:去括号、移项、合并同类项、系数化一。1. 新定义一种运算“”,规定,那么的值为 。2. 方程关于的方程和方程的解相同,(1)求的值;(2)根据所求的m的值当时,试求的值。3. 已知关于的方程的解为正整数,求整数的值。 4.新定义一种运算“”规定,若,求x的值。5.若代数式试求代数式的值。四、 一元二次方程的应用常用数量关系:1. 行程问题:路程=速度时间 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度2. 利润率问题:利润=售价进价 利润率 售价=3.工程问题:工作总量=工作效率工作时间 4. 浓度问题: 溶质质量=溶液质量浓度 溶液质量=溶质质量
3、浓度1、行程问题:例题1、(相遇问题)甲、乙两人从相距为180千米的A、B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。已知甲的速度为15千米/小时,乙的速度为45千米/小时。(1)经过多少时间两人相遇? (2)相遇后经过多少时间乙到达A地?变式:甲、乙两人从A,B两地同时出发,甲骑自行车,乙开汽车,沿同一条路线相向匀速行驶。出发后经3 小时两人相遇。已知在相遇时乙比甲多行了90千米,相遇后经 1小时乙到达A地。问甲、乙行驶的速度分别是多少?例题2、(追及问题)市实验中学学生步行到郊外旅行。(1)班学生组成前队,步行速度为4千米/时,(2)班学生组成后队,速度为6千米/时。前队
4、出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时。(1)后队追上前队需要多长时间?(2)后队追上前队时间内,联络员走的路程是多少?(3)两队何时相距3千米?(4)两队何时相距8千米?变式1:甲,乙两人登一座山,甲每分钟登高10米,并且先出发30分钟,乙每分钟登高15米,两人同时登上山顶。甲用多少时间登山?这座山有多高?变式2:甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人均匀速前进。已知两人上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米。求A,B两地之间的距离。例题3、(环型跑道问题)一
5、条环形跑道长400米,甲、乙两人练习赛跑,甲每分钟跑350米,乙每分钟跑250米。(1)若两人同时同地背向而行,几分钟后两人首次相遇?变式:几分钟后两人二次相遇?(2)若两人同时同地同向而行,几分钟后两人首次相遇?又经过几分钟两人二次相遇?例题4、(顺、逆水问题)一轮船往返A,B两港之间,逆水航行需3时,顺水航行需2时,水流速度是3千米/时,则轮船在静水中的速度是多少?变式:一架飞机在两城之间飞行,风速为24千米/小时。顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的航速和两城之间的航程。例题5、(错车问题)在一段双轨铁道上,两列火车同时驶过,A列车车速为20米/秒,B列车车速为2
6、4米/秒,若A列车全长180米,B列车全长160米,两列车错车的时间是多长时间?变式1:一列火车匀速行驶,经过一条长300m的隧道需要20秒的时间。隧道的顶上有一盏灯 ,垂直向下发光,灯光照在火车上的时间是10秒,根据以上数据,你能求出火车的长度?2、利润问题(1)一件衣服的进价为x元,售价为60元,利润是_元,利润率是_.变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为_. (2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是_元,利润率是_. 变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是_元,利润率是_. 变式2:一台电视售价为1100
7、元,利润率为10%,则这台电视的进价为_元.变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?变式6:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,买这两件衣服总的是盈利还是亏损,或是不盈不亏?3、工程问题:(1)甲每天生产某种零件80个,3天能生产 个零件。(2)甲每天生产某种零件80个,乙每天生
8、产某种零件x个。他们5天一共生产 个零件。(3)甲每天生产某种零件80个,乙每天生产这种零件x个,甲生产3天后,乙也加入生产同一种零件,再经过5天, 两人共生产 个零件。(4)一项工程甲独做需6天完成,甲独做一天可完成这项工程 ;若乙独做比甲快2天完成,则乙独做一天可完成这项工程的 。变式1:一件工作,甲单独做20小时完成,乙单独做12小时完成。甲乙合做,需几小时完成这件工作? 变式2:一件工作,甲单独做20小时完成,乙单独做12小时完成。若甲先单独做4小时,剩下的部分由甲、乙合做,还需几小时完成? 变式3:一件工作,甲单独做20小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、
9、丙合做5小时,然后由甲、乙合做,问还需几天完成? 变式4:整理一批数据,有一人做需要80小时完成。现在计划先由一些人做2小时,在增加5人做8小时,完成这项工作的3/4,怎样安排参与整理数据的具体人数?变式2:在一列火车经过一座桥梁,列车车速为20米/秒,全长180米,若桥梁长为3260米,那么列车通过桥梁需要多长时间? 4. 浓度问题 例题:有含盐8的盐水40,要使盐水含盐量为20,(1) 如果加盐,需要加多少千克盐?(2) 如果蒸发掉水分,需要蒸发多少千克的水? 变式1.要配置浓度为10的盐水100千克,需要20的盐水与5%的盐水各多少千克? 变式2.有两种合金,第一种含铜90%,第二种含铜
10、80%,先要熔炼一种含铜82.5%的合金240千克。两种合金各应多少千克?5、分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则 剩余20本;如果每人分4本,则还缺25本.问这个班有多少 学生?变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?6、匹配问题:例题2、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。一个盒身与两个盒底配成一套罐头盒。现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?