《七年级下数学平面直角坐标系知识点总结.doc》由会员分享,可在线阅读,更多相关《七年级下数学平面直角坐标系知识点总结.doc(6页珍藏版)》请在三一办公上搜索。
1、七年级下数学第七章 平面直角坐标系知识点总结一、本章的主要知识点(一)有序数对:有顺序的两个数a与b组成的数对。 1、记作(a ,b); 2、注意:a、b的先后顺序对位置的影响。3、坐标平面上的任意一点P的坐标,都和惟一的一对 有序实数对() -3 -2 -1 0 1 ab1-1-2-3P(a,b)Yx一一对应;其中,为横坐标,为纵坐标坐标;4、轴上的点,纵坐标等于0;轴上的点,横坐标等于0; 坐标轴上的点不属于任何象限;(二) 平面直角坐标系平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。 3、各种特殊点的坐标特点。象限:坐标轴上的点不属于任何象限象限横坐
2、标纵坐标第一象限正正第二象限负正第三象限负负第四象限正负 第一象限:x0,y0 第二象限:x0 第三象限:x0,y0,y0 横坐标轴上的点:(x,0) 纵坐标轴上的点:(0,y)(三)坐标方法的简单应用 1、用坐标表示地理位置; 2、用坐标表示平移二、平行于坐标轴的直线的点的坐标特点:平行于x轴(或横轴)的直线上的点的纵坐标相同;平行于y轴(或纵轴)的直线上的点的横坐标相同。a) 在与轴平行的直线上, 所有点的纵坐标相等;YABB 点A、B的纵坐标都等于; XYXb) 在与轴平行的直线上,所有点的横坐标相等;CD 点C、D的横坐标都等于;三、各象限的角平分线上的点的坐标特点:第一、三象限角平分
3、线上的点的横纵坐标相同;第二、四象限角平分线上的点的横纵坐标相反。c) 若点P()在第一、三象限的角平分线上,则,即横、纵坐标相等;d) 若点P()在第二、四象限的角平分线上,则,即横、纵坐标互为相反数;yPOXXyPO 在第一、三象限的角平分线上 在第二、四象限的角平分线上四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数e) 点P关于轴的对称点为, 即横坐标不变,纵坐标互为相反数;f) 点P关于轴的对称点为, 即纵坐标不变,横坐标互为相反数;XyPOXyPOXyPOg
4、) 点P关于原点的对称点为,即横、纵坐标都互为相反数; 关于x轴对称 关于y轴对称 关于原点对称五、特殊位置点的特殊坐标:坐标轴上点P(x,y)连线平行于坐标轴的点点P(x,y)在各象限的坐标特点象限角平分线上的点X轴Y轴原点平行X轴平行Y轴第一象限第二象限第三象限第四象限第一、三象限第二、四象限(x,0)(0,y)(0,0)纵坐标相同横坐标不同横坐标相同纵坐标不同x0y0x0y0x0y0x0y0(m,m)(m,-m)六、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下: 建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向; 根据具体问题确定适当的比例尺,在坐标轴上标出单位
5、长度;P(x,y)P(x,ya)P(xa,y)P(xa,y)P(x,ya)向上平移a个单位长度向下平移a个单位长度向右平移a个单位长度向左平移a个单位长度 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。七、用坐标表示平移:见下图八 、点到坐标轴的距离:点到x轴的距离=纵坐标的绝对值,点到y轴的距离=横坐标的绝对值。即A(x,y),到x轴的距离=|y|,到y轴的距离=|x|例、若点A到x轴的距离为5,到y轴的距离为4则A的坐标为分析:到x轴的距离为5说明点A的|纵坐标|=5,则纵坐标为5或-5,到y轴的距离为4,说明|横坐标|=4,则横坐标为4或-4。综述,点A的坐标为(4,5)、(4
6、,-5)、(-4,5)、(-4,-5)。类似的,若点M到x轴的距离为3,到y轴的距离为6,且在第二象限,则点M坐标为(前两个条件的分析方法一样,可和四个分类,再加上点M在第二象限,可知点M坐标符号为(-,+),便可确定答案。)九、对称两点的坐标特征:1、关于x轴对称两点:横坐标相同,纵坐标互为相反数。2、关于y轴对称两点:横坐标互为相反数,纵坐标相同。3、关于原点对称两点:横、纵坐标均互为相反数。即:若A(a,b),B(a,-b),则A与B关于x轴对称,若A(a,b),B(-a,b),则A与B关于y轴对称。若A(a,b),B(-a,-b),则A与B关于原点对称二、经典例题知识一、坐标系的理解例
7、1、平面内点的坐标是( ) A 一个点 B 一个图形 C 一个数 D 一个有序数对知识二、已知坐标系中特殊位置上的点,求点的坐标点在x轴上,坐标为(x,0)在x轴的负半轴上时,x0点在y轴上,坐标为(0,y)在y轴的负半轴上时,y0第一、三象限角平分线上的点的横纵坐标相同(即在y=x直线上);坐标点(x,y)xy0第二、 四象限角平分线上的点的横纵坐标相反(即在y= -x直线上);坐标点(x,y)xy0例1 点P在轴上对应的实数是,则点P的坐标是 ,若点Q在轴上对应的实数是,则点Q的坐标是 , 例2 点P(a-1,2a-9)在x轴负半轴上,则P点坐标是。学生自测1、点P(m+2,m-1)在y轴
8、上,则点P的坐标是 .2、已知点A(m,-2),点B(3,m-1),且直线ABx轴,则m的值为 。3、 已知:A(1,2),B(x,y),ABx轴,且B到y轴距离为2,则点B的坐标是 .4平行于x轴的直线上的点的纵坐标一定()A大于0B小于0C相等D互为相反数 (3)若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则a= .(3)已知点P(x2-3,1)在一、三象限夹角平分线上,则x= .5过点A(2,-3)且垂直于y轴的直线交y轴于点B,则点B坐标为( ) A(0,2) B(2,0)C(0,-3)D(-3,0)6如果直线AB平行于y轴,则点A,B的坐标之间的关系是( ) A横坐标相等
9、 B纵坐标相等C横坐标的绝对值相等 D纵坐标的绝对值相等知识点三:点符号特征。点在第一象限时,横、纵坐标都为 ,点在第二象限时,横坐标为 ,纵坐标为 ,点有第三象限时,横、纵坐标都为 ,点在第四象限时,横坐标为 ,纵坐标为 ;y轴上的点的横坐标为 ,x轴上的点的纵坐标为 。例1 .如果ab0,且ab0,那么点(a,b)在( )A、第一象限 B、第二象限 C、第三象限, D、第四象限.例2、如果0,那么点P(x,y)在( ) (A) 第二象限 (B) 第四象限 (C) 第四象限或第二象限 (D) 第一象限或第三象限 学生自测1.点的坐标是(,),则点在第 象限2、点P(x,y)在第四象限,且|x
10、|=3,|y|=2,则P点的坐标是 。3点 A在第二象限 ,它到 轴 、轴的距离分别是 、,则坐标是 ;4. 若点(x,y)的坐标满足xy,则点在第 象限;若点(x,y)的坐标满足xy,且在x轴上方,则点在第 象限若点P(a,b)在第三象限,则点P(a,b1)在第 象限;5若点P(, )在第二象限,则下列关系正确的是 ( )A. B. C. D.6点(,)不可能在 ( )A.第一象限B.第二象限C.第三象限 D.第四象限7已知点P(,)在第三象限,则的取值范围是 ( )A . B.35 C.或 D.5或3 (02包头市)8设点P的坐标(x,y),根据下列条件判定点P在坐标平面内的位置:(1);
11、(2);(3)(2)点A(1-)在第 象限.(3)横坐标为负,纵坐标为零的点在( ) (A)第一象限 (B)第二象限 (C)X轴的负半轴 (D)Y轴的负半轴知识四:求一些特殊图形,在平面直角坐标系中的点的坐标。过点作x轴的 线,垂足所代表的 是这点的横坐标;过点作y轴的垂线,垂足所代表的实数,是这点的 。点的横坐标写在小括号里第一个位置,纵坐标写小括号里的第 个位置,中间用 隔开。例1、X轴上的点P到Y轴的距离为2.5,则点的坐标为() (2.5,0) B (-2.5,0) C(0,2.5) D(2.5,0)或(-2.5,0)学生自测1、点(,)到x轴的距离为;点(-,)到y轴的距离为;点C到
12、x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是。2.若点的坐标是(,),则它到x轴的距离是 ,到y轴的距离是 3.点到x轴、y轴的距离分别是、,则点的坐标可能为 。4已知点M到x轴的距离为3,到y轴的距离为2,则M点的坐标为( )A(3,2) B(-3,-2) C(3,-2) D(2,3),(2,-3),(-2,3),(-2,-3)5若点P(,)到轴的距离是,到轴的距离是,则这样的点P有 ( ).个 .个 .个.个6.已知直角三角形ABC的顶点A(2 ,0),B(2 ,3).A是直角顶点,斜边长为5,求顶点C的坐标 . 知识点五:对称点的坐标特征。关于x对称的点,横坐标不 ,纵坐
13、标互为 ;关于y轴对称的点, 坐标不变, 坐标互为相反数;关于原点对称的点,横坐标 ,纵坐标 。例1. 已知A(3,5),则该点关于x轴对称的点的坐标为_;关于y轴对的点的坐标为_;关于原点对称的点的坐标为_;关于直线x=2对称的点的坐标为_。例2. 将三角形ABC的各顶点的横坐标都乘以,则所得三角形与三角形ABC的关系()A关于x轴对称B关于y轴对称C关于原点对称D将三角形ABC向左平移了一个单位学生自测1在第一象限到x轴距离为4,到y轴距离为7的点的坐标是_;在第四象限到x轴距离为5,到y轴距离为2的点的坐标是_;3.点A(-1,-3)关于x轴对称点的坐标是 .关于原点对称的点坐标是 。4
14、.若点A(m,-2),B(1,n)关于原点对称,则m= ,n= .5已知:点P的坐标是(,),且点P关于轴对称的点的坐标是(,),则;6点P(,)关于轴的对称点的坐标是 ,关于轴的对称点的坐标是 ,关于原点的对称点的坐标是 ;7若 关于原点对称 ,则 ;8已知,则点(,)在 ;10点A(,)关于轴对称的点的坐标是 ( )A.(,) B. (,) C . (, ) D. (, )11点P(,)关于原点的对称点的坐标是 ( )A.(,) B (,) C (,) D. (,)12在直角坐标系中,点P(,)关于轴对称的点P1的坐标是 ( )A (,) B. (,) C. (, )D. (,)知识点六:
15、利用直角坐标系描述实际点的位置。需要根据具体情况建立适当的平面直角坐标系,找出对应点的坐标。知识点七:平移、旋转的坐标特点。在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x+a,y) 向左平移a个单位长度,可以得到对应点(x-a,y) 向上平移b个单位长度,可以得到对应点(x,y+b) 向下平移b个单位长度,可以得到对应点(x,y-b)图形向左平移m个单位,纵坐标不变,横坐标 m个单位;图形向右平移m个单位,纵坐标不变,横坐标 m个单位;图形向上平移个单位,横坐标 ,纵坐标增加n个单位;向下平移n个单位, 不变, 减小n个单位。旋转的情形,同学们自己归纳一下。例1. 三角形ABC三个顶点A、B、C的坐标分别为A(2,1)、B(1,3)、C(4,3.5)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标,并在直角坐标系中描出这些点;在平面直角坐标系中,将点M(1,0)向右平移3个单位,得到点,则点的坐标为_