微波技术与天线考试复习重点(含答案)汇总.doc

上传人:牧羊曲112 文档编号:3963755 上传时间:2023-03-29 格式:DOC 页数:25 大小:4.47MB
返回 下载 相关 举报
微波技术与天线考试复习重点(含答案)汇总.doc_第1页
第1页 / 共25页
微波技术与天线考试复习重点(含答案)汇总.doc_第2页
第2页 / 共25页
微波技术与天线考试复习重点(含答案)汇总.doc_第3页
第3页 / 共25页
微波技术与天线考试复习重点(含答案)汇总.doc_第4页
第4页 / 共25页
微波技术与天线考试复习重点(含答案)汇总.doc_第5页
第5页 / 共25页
点击查看更多>>
资源描述

《微波技术与天线考试复习重点(含答案)汇总.doc》由会员分享,可在线阅读,更多相关《微波技术与天线考试复习重点(含答案)汇总.doc(25页珍藏版)》请在三一办公上搜索。

1、 微波技术与天线复习提纲(2011级) 一、思考题 1. 什么是微波?微波有什么特点? 答:微波是电磁波谱中介于超短波与红外线之间的波段,频率范围从300MHZ到3000GHZ,波长从0.1mm到1m;微波的特点:似光性、穿透性、宽频带特性、热效应特性、散射特性、抗低频干扰特性、视距传播性、分布参数的不确定性、电磁兼容和电磁环境污染。2. 试解释一下长线的物理概念,说明以长线为基础的传输线理论的主要物理现象有哪些?一般是采用哪些物理量来描述? 答:长线是指传输线的几何长度与工作波长相比拟的的传输线;以长线为基础的物理现象:传输线的反射和衰落;主要描述的物理量有:输入阻抗、反射系数、传输系数和驻

2、波系数。3. 均匀传输线如何建立等效电路,等效电路中各个等效元件如何定义? 4. 均匀传输线方程通解的含义 5. 如何求得传输线方程的解? 6. 试解释传输线的工作特性参数(特性阻抗、传播常数、相速和波长) 答:传输线的工作特性参数主要有特征阻抗Z0,传输常数,相速及波长。1)特征阻抗即传输线上入射波电压与入射波电流的比值或反射波电压与反射波电流比值的负值,其表达式为,它仅由自身的分布参数决定而与负载及信号源无关;2)传输常数是描述传输线上导行波的衰减和相移的参数,其中,和分别称为衰减常数和相移常数,其一般的表达式为;3)传输线上电压、电流入射波(或反射波)的等相位面沿传播方向传播的速度称为相

3、速,即;4)传输线上电磁波的波长与自由空间波长的关系。7. 传输线状态参量输入阻抗、反射系数、驻波比是如何定义的,有何特点,并分析三者之间的关系 答:输入阻抗:传输线上任一点的阻抗Zin定义为该点的电压和电流之比,与导波系统的状态特性无关,反射系数:传输线上任意一点反射波电压与入射波电压的比值称为传输线在该点的反射系数,对于无耗传输线,它的表达式为驻波比:传输线上波腹点电压振幅与波节点电压振幅的比值为电压驻波比,也称为驻波系数。反射系数与输入阻抗的关系:当传输线的特性阻抗一定时,输入阻抗与反射系数一一对应,因此,输入阻抗可通过反射系数的测量来确定;当时,=0,此时传输线上任一点的反射系数都等于

4、0,称之为负载匹配。驻波比与反射系数的关系:,驻波比的取值范围是;当传输线上无反射时,驻波比为1,当传输线全反射时,驻波比趋于无穷大。显然,驻波比反映了传输线上驻波的程度,即驻波比越大,传输线的驻波就越严重。8. 均匀传输线输入阻抗的特性,与哪些参数有关? 9. 均匀传输线反射系数的特性 10. 简述传输线的行波状态,驻波状态和行驻波状态。 11. 什么是行波状态,行波状态的特点 12. 什么是驻波状态,驻波状态的特性 13. 分析无耗传输线呈纯驻波状态时终端可接哪几种负载,各自对应的电压电流分布 14. 介绍传输功率、回波损耗、插入损耗 15. 阻抗匹配的意义,阻抗匹配有哪三者类型,并说明这

5、三种匹配如何实现? 16. 负载获得最大输出功率时,负载与源阻抗间关系: 。17. 史密斯圆图是求解均匀传输线有关 阻抗匹配 和 功率匹配 问题的一类曲线坐标图,图上有两组坐标线,即归一化阻抗或导纳的 实部和虚部 的等值线簇与 反射系数 的 幅和模角 等值线簇,所有这些等值线都是圆或圆弧,故也称阻抗圆图或导纳圆图。导纳圆图可以通过对 阻抗圆图 旋转180得到。阻抗圆图的上半部分呈 感 性,下半部分呈 容 性。Smith圆图与实轴左边的交点为 短路 点,与横轴右边的交点为 开路 点。Smith圆图实轴上的点代表 纯电阻 点,左半轴上的点为电压波 节 点,右半轴上的点为电压波 腹 点。在传输线上负

6、载向电源方向移动时,对应在圆图上应 顺时针 旋转,反之在传输线上电源向负载方向移动时,对应在圆图上应 逆时针 旋转。 18. TEM、TE和TM波是如何定义的?什么是波导的截止性?分别说明矩形波导、圆波导、同轴线、带状线和微带线的主模是什么? 答:1)TE波,TM波,TEM波是属于电磁波的三种模式。TE波指电矢量与传播方向垂直,或者说传播方向上没有电矢量。TM波是指磁矢量与传播方向垂直。TEM波指电矢量和磁矢量都与传播方向垂直;2)是与波导横截面尺寸、形状及传输模式有关的一个参量,当相移常数=0时,意味导波系统不再传播,亦称为截止, 此时, 故将称为截止波数3)矩形波导的主模是TE10模;圆波

7、导的主模是TE11模;同轴线的主模是TEM模;带状线的主模是TEM模;微带线的主模是准TEM模。19. 简述述矩形波导传输特性的主要参数定义:相移常数,截至波长,截至波数,波导波长,相速度,TE波和TM波的波阻抗 1) 相移常数和截止波数:相移常数和截止波数的关系是2) 相速:电磁波的等相位面移动速度称为相速,即3) 波导波长:导行波的波长称为波导波长,它与波数的关系式为 4) 波阻抗:某个波形的横向电场和横向磁场之比,即20.导波系统中截止波长、工作波长和波导波长的区别。 答:导行波的波长称为波导波长,用g表示,它与波数的关系式为其中,为工作波长。21. 为什么空心的金属波导内不能传播TEM

8、波? 答:空心金属波导内不能存在TEM波。这是因为:如果内部存在TEM波,则要求磁场完全在波导的横截面内,而且是闭合曲线。有麦克斯韦第一方程可知,闭合曲线上磁场的积分等于与曲线相交链的电流。由于空心金属波导中不存在轴向即传播方向的传导电流,故必要求有传播方向的位移电流,由位移电流的定义式可知,要求一定有电场存在,显然这个结论与TEM波的定义相矛盾,所以,规则金属内不能传输TEM波。22. 圆波导中的主模为 TE11模 ,轴对称模为 TM01模 ,低损耗模为 TE01模 。 23. 说明圆波导中TE01模为什么具有低损耗特性。 答:TE01模磁场只有径向和轴向分量,故波导管壁电流无纵向分量,只有

9、周向电流。因此当传输功率一定时,随着频率升高,管壁的热损耗将单调下降,故其损耗相对其它模式来说是低的,故可将工作在TE01模的圆波导用于毫米波的远距离传输或制作高Q值的谐振腔。24. 什么叫模式简并现象?矩形波的和圆波导的模式简并有何异同? 答:波导中的电磁波是各种TMmn模和TEmn模的各种线性组合,m为x方向变化的半周期数,n是y方向变化的半周期数;如果当两个模式TMmn和TEmn的截止波长相等时,也就说明这两种模式在矩形波导里出现的可能性相同,这种现象就叫做简并。25. 解释圆波导中的模式简并和极化简并 26.为什么一般矩形(主模工作条件下)测量线探针开槽开在波导宽壁的中心线上? 27.

10、 带状线传输主模TEM模时,必须抑制高次模 TE模 和 TM模 ;微带线的高次模有 波导模式 和 表面波模式 。28. 微带线的特性阻抗随着w/h的增大而 减小 。相同尺寸的条件下,r越大, 特性阻抗越 小 。29. 微波网络基础中,如何将波导管等效成平行传输线的? 30. 列出微波等效电路网络常用有5 种等效电路的矩阵表示,并说明矩阵中的参数是如何测量得到的。 31. S参数如何测量。 32. 二端口网络的S参数(S11,S12,S21,S22)的物理意义。 33. 多口网络矩阵的性质:网络互易有,网络无耗有,网络对称时有。34. 阻抗匹配元器件的定义,作用,并举例说明有哪些阻抗匹配元件。

11、35. 写出理想的双口元件的矩阵,理想衰减器的=,理想相移器=,理想隔离器=。36. 功率分配元器件的定义,并举例说明有哪些? 答:将一路微波功率按比例分成几路的元件称为功率分配元件,主要包括定向耦合器、功率分配器以及各种微波分支器件。37. 简述双分支定向耦合器的工作原理,并写出3dB双分支定向耦合器的S矩阵。 答:假设输入电压信号从端口“”经A点输入,则到的D点的信号有两路,一路由分支线直达,其波行程为g/4,另一路由ABCD,波行程为3g/4,;故两条路径到达的波行程差为g/2,相应的相位差为,即相位相反。因此若选择合适的特性阻抗,使到达的两路信号的振幅相等,则端口“”处的两路信号相互抵

12、消,从而实现隔离。同样由AC的两路信号为同相信号,故在端口“”有耦合输出信号,即端口“”为耦合端。耦合端输出信号的大小同样取决于各线的特性阻抗。38. 简述天线的定义和功能 答:用来辐射和接收无线电波的装置称为天线。基本功能:1)天线应能将导波能量尽可能多地转变成电磁波能量;2)天线具有方向性;3)天线有适当的极化。4)天线应有足够的工作频带。39. 简述天线近场区和远场区的特点 答:近区场: 在近区, 电场和与静电场问题中的电偶极子的电场相似, 磁场和恒定电流场问题中的电流元的磁场相似, 所以近区场称为准静态场。 由于场强与的高次方成正比, 所以近区场随距离的增大而迅速减小, 即离天线较远时

13、, 可认为近区场近似为零。 电场与磁场相位相差90,说明玻印廷矢量为虚数, 也就是说, 电磁能量在场源和场之间来回振荡, 没有能量向外辐射, 所以近区场又称为感应场。 远区场:在远场,电基本振子的场只有和两个分量,它们在空间上相互垂直,在时间上同相位,所以其玻印亭矢量是实数,且指向方向。这说明电基本振子的远区场是一个沿着径向向外传播的横电磁波,故远区场又称辐射场。是一个常数,即等于媒质的本征阻抗,因而远场区具有与平行波相同的特性。辐射场的强度与距离成反比,随着距离的增大,辐射场减小。这是因为辐射场是以球面波的形式向外扩散的,当距离增大时,辐射能量分布到更大的球面面积上。在不同的方向上,辐射强度

14、不相等。这说明电基本振子的辐射是有方向性的。40. 天线的电参数有哪些? 答:天线的电参数有:主瓣宽度、旁瓣电平、前后比、方向系数。41. 电基本振子的归一化方向函数,方向系数D=1.5,辐射电阻,3dB波瓣宽度900.42. 解释天线的方向图,以及E面和H面? 答:如果将作为空间角度q 和f 函数的天线方向性函数以图形的形式表示出来,则称为方向图或方向性图。E面:含最大辐射方向,电场矢量所在的平面(由电场强度方向和最大辐射方向构成的平面)H面:含最大辐射方向,磁场矢量所在的平面(由磁场方向和最大辐射方向构成的平面)。43. 简述什么是天线的极化,极化的分类? 答:天线的极化是天线在最大辐射方

15、向上辐射场的极化,一般是指辐射电场的空间取向。辐射场的极化是指在空间某一固定位置上电场矢量端点随时间运动的轨迹。根据轨迹形状不同,可分为线极化、圆极化和椭圆极化。线极化:电场矢量沿着一条线做往复运动。线极化分为水平极化和垂直极化。圆极化:电场矢量的大小不变,其末端做圆周运动。分为左旋圆极化和右旋圆极化。椭圆极化:电场矢量大小随时间变化,其末端运动的轨迹是椭圆。分为左旋椭圆极化和右旋椭圆极化。 44. 解释天线方向图参数中的主瓣宽度、旁瓣电平、前后比、方向系数 45. 从接收角度讲, 对天线的方向性有哪些要求? 答:1)主瓣宽度尽可能窄,以抑制干扰,但如果干扰与有用信号来自同一方向,即使主瓣宽度

16、很窄,也不能抑制干扰,另一方面当来波方向易于变化时,主瓣太窄难以保证稳定的接收,如何选择主瓣宽度,应根据具体情况而定。2)旁瓣电平尽可能低,在任何情况下,都希望电平尽可能地低。3)要求天线方向图中,最好有一个或多个可控制的零点,以便将零点对准干扰方向,而且当干扰方向变化时,零点方向也随之改变,以抑制干扰,这也称为零点自动形成技术46. 什么是衰落?简述引起衰落的原因。 答:所谓衰落,一般是指信号电平随时间的随机起伏。引起衰落的原因大致分为两大类:吸收性衰落和干涉型衰落。吸收性衰落:由于传输媒质电参数的变化,使得信号在媒质中的衰减发生相应的变化,如大气中的云雾等都对电波有吸收作用,由于气象的随机

17、性,因而这种吸收的强弱也有起伏,形成信号的衰落。干涉型衰落:由随机多径干涉现象引起的信号幅度和相位的随机起伏称为干涉型衰落。47. 什么是波长缩短效应?试简要解释其原因。 答:对称振子上的相移常数大于自由空间的波数k,亦即对称振子上的波长短于自由空间波长,这是一种波长缩短现象。 对称振子辐射引起振子电流衰减, 使振子电流相速减小, 相移常数大于自由空间的波数k, 致使波长缩短; 由于振子导体有一定半径, 末端分布电容增大(称为末端效应), 末端电流实际不为零, 这等效于振子长度增加, 因而造成波长缩短。振子导体越粗, 末端效应越显著, 波长缩短越严重。48. 对称振子天线在臂长等于多少时方向性

18、最好? 答:时,方向性最好。49. 半波对称振子的方向系数: 1.64 。50. 半波振子的 78o 。51. 天线的有效面积 答:有效接收面积是衡量一个天线接收无线电波能力的重要指标。它的定义为: 当天线以最大接收方向对准来波方向进行接收时, 接收天线传送到匹配负载的平均功率为PLmax, 并假定此功率是由一块与来波方向相垂直的面积所截获, 则这个面积就称为接收天线的有效接收面积, 记为Ae, 即有式中, Sav为入射到天线上电磁波的时间平均功率流密度,其值为52. 简述天线增益的定义。 答:天线增益是这样定义的。即输入功率相同时,某天线在某一方向上的远区产生的功率流密度S1与理想点源(无方

19、向性)天线在同一方向同一距离处产生的功率流密度S0的比值,称为该天线在该方向上的增益系数,简称增益,常用G表示。53. 写出阵列天线的方向图乘积定理,并作说明。 答: 由上式可得到如下结论:在各天线元为相似元的条件下,天线阵的方向图函数是单元因子与阵因子之积。这个特性称为方向图乘积定理。式中,称为元因子;称为阵因子。元因子表示组成天线阵的单个辐射元的方向图函数,其值仅取决于天线元本身的类型和尺寸。它体现了天线元的方向性对天线阵方向性的影响。阵因子表示各向同性元所组成的天线阵的方向性,其值取决于天线阵的排列方式及其天线元上激励电流的相对振幅和相位,与天线元本身的类型和尺寸无关。54. 采用天线阵

20、可增强方向性,其主要原理是什么? 答:为了加强天线的方向性,将若干辐射单元按某种方式排列所构成的系统称为天线阵。构成天线阵的辐射单元称为天线元或阵元。天线阵的辐射场是各天线元所产生场的矢量叠加,只要各天线元上的电流振幅和相位分布满足适当的关系,就可以得到需要的辐射特性。二、课后习题1.4; 1.6; 1.9 ; 1.10; 1.12; 1.13; 2.3; 2.7 2.10; 4.2; 4.4; 4.5; 4.6; 4.8; 5.6 ; 5.11 ; 6.5; 6.6; 8.5 第一章1.4 有一特性阻抗为的无耗均匀传输线,导体间的媒质参数为,终端接有的负载。当时,其线长度为。试求:(1)传输

21、线实际长度;(2)负载终端反射系数;(3)输入端反射系数;(4)输入端阻抗。解:(1)传输线上的波长:因而,传输线的实际长度:(2)终端放射系数为:(3)输入端的反射系数为:(4)输入阻抗:16 设某一均匀无耗线特性阻抗为,终端接有未知负载,现在传输线上测得电压最大值和最小值分别为100mV和20mV,第一个电压波节点的位置离负载试求该负载阻抗。解:根据驻波比定义: 反射系数的模值:由电压波节点离负载的位置:求的负载反射系数的相位,所以负载阻抗为:1.9 特性阻抗为,长度为的均匀无耗传输线,终端接有负载,始端接有电压为,内阻抗的电源。求(1)传输线始端的电压;(2)负载吸收的平均功率;(3)终

22、端的电压。解:(1)根据输入阻抗公式,输入端的阻抗为:由此可求的输入端的电压:(2)由,所以故(3)负载吸收功率:1.10 特性阻抗的均匀无耗传输线,终端接有负载,用的阻抗变换器实现阻抗匹配,试求阻抗变换器的特性阻抗及离终端距离。解:负载反射系数:第一个波腹点离负载距离:即在距离负载的位置插入枝节的阻抗变换器,可实现匹配第二种解:第一个波节点离负载距离:即在距离负载的位置插入枝节的阻抗变换器,可实现匹配1.12在特性阻抗为的无耗双导线上测得,第一个电压波节点的位置,求负载,用并联枝节进行匹配,求出枝节的位置和长度。解:(1)由,可得反射系数的模值由电压波节点离负载的位置:,可得,所以负载阻抗为:(2)并联枝节接入位置离负载的距离d和并联短路枝节的长度l:另外一组解:1.13 一均匀无耗传输线的特性阻抗为,负载阻抗为,工作波长。试计算串联枝节匹配器的位置和长度。解:负载反射系数: 驻波比:串联枝节距离负载的位置:串联短路枝节长度:第二组解:串联枝节距离负载的位置:串联短路枝节长度:第二章2.10第四章第五章第六章第八章考试题型: 一、填空题(10分) 二、名词解释(16分) 三、简答题(30分) 四、计算题(44分)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号