《毕业设计(论文)2×15MW热力发电厂继电保护、自动装置及二次回路设计.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)2×15MW热力发电厂继电保护、自动装置及二次回路设计.doc(29页珍藏版)》请在三一办公上搜索。
1、摘 要本设计书是2006年毕业生毕业设计书。本设计书是为了让毕业生适应电力系统的发展需要,使毕业生能更深刻、实际的接触电力系统的各种相关知识。主要内容是关于215MW热力发电厂的继电保护、自动装置及二次回路进行设计,包括电气主接线说明、运行方式的分析、短路电流的计算、对线路的整定计算和灵敏度校验、继电保护的配置等,其中结合了三年来所学的专业理论知识和校外实习中获得的实践经验,是三年来学习的一个总结和对未来工作的一个铺垫。本设计书是根据2006年我校继电教研室根据毕业生的性质、专业及就业走向所设计的任务书中的要求所编写的。关键词 电力系统,继电保护,二次回路,自动装置目 录摘 要I引 言21章
2、电气主接线311 电气主接线32章 运行方式分析421 运行方式分析43章 计算53.1 短路电流计算说明53.2短路电流计算63.2.1 元件标么阻抗计算63.2.2 短路电流计算83.3整定计算和灵敏度校验93.3.1 对66KV李热线进行整定计算93.3.2 对66KV李热线进行灵敏度校验104章 保护配置114.1 线路保护114.1.1线路常见故障114.1.2三段式电流保护124.1.3无限时电流速断保护134.1.4限时电流速断保护144.2 变压器保护154.2.1 变压器常见故障分析154.2.2 变压器保护配置154.3 发电机保护184.3.1 发电机的故障类型及不正常运
3、行状态184.3.2 发电机保护配置194.4 母线的保护配制234.4.1母线故障类型234.4.2母线的保护配制23总 结25致 谢26参考文献27附 录引 言本设计书是根据2006年毕业生毕业设计任务书的要求所编写的,是为了让毕业生适应电力系统的发展需要,使毕业生能更深刻、实际的接触电力系统的各种相关知识。本设计的设计课题是关于215MW热力发电厂的继电保护、自动装置及二次回路进行设计。继电保护是电力系统中最不可缺少的,电力系统在运行中不可避免的会出现各种故障或不正常运行状态,这些故障或不正常运行状态若不及时正确处理,都可能引发一系列的事故,造成电能质量降低到不能允许的程度,造成人身伤亡
4、及电气设备损坏等,后果之严重是不可预示的,所以必须装设继电保护装置,尽量防止故障的发生。所以在毕业设计中,继电保护装置的配置是一个重要环节。本设计共分5章。第一章是电气主接线说明;第二章运行方式的分析;第三章主要介绍了短路电流的计算及对线路的整定计算和灵敏度校验;第四章是对各种设备进行了继电保护的配置。本设计书编写过程中曾遇到过各种各样的问题和困难,指导老师岳军老师给予了宝贵的意见的精心指导,在此表示深切的谢意。由于本人水平有限,设计书中难免会有错误和不足之处,恳请老师批评指正。1章 电气主接线11 电气主接线电气主接线是由发电机、变压器、断路器等一次元件及它们之间的导体所组成。电气主接线发电
5、厂电气设计的首要部分,是电气运行人员进行各种操作和事故处理的重要依据,也是构成电力系统的重要环节。电气主接线的确定对电力系统整体及发电厂本身运行的可靠性、灵活性和经济性密切相关,并且对电气设备的选择、配电装置布置、继电保护和控制方式的拟定有较大影响。主要配线原则应主要考虑以下原则:1) 根据电力系统和用户的要求,确保运行的可靠性和供电质量;2) 运行操作的灵活性;3) 热电站建设的技术经济指标先进;4) 维护和检修方便、安全;5) 具有发展和扩建的可能性;6) 接线尽可能简单、可靠。本次毕业设计是小型热电厂,根据需要配备容量为15MW ,QF-15-2型发电机两台;接线为Y,d11,容量为16
6、000KVA的主变压器两台;型号为NKLS-6-800-6的电抗器两台。热电厂66千伏侧主接线为内桥接线方式,热电厂6千伏侧主接线为内桥接线,经消弧线圈分段方式接线,66千伏本期为双回路架空线路。主接线图见任务书。2章 运行方式分析21 运行方式分析考虑其运行方式,原则上应尽可能使其供电系统发生事故式负荷波动时,能起应急电源作用,能继续维持部分生产。当系统故障跳闸时,切除次要负荷,以免发电机因过载而相继跳闸。当“解列”时发电机一种可能是处于过负荷状态,即发电机发出功率不小于用户用电的功率,这时发电机难以维持运行。另一种可能是发电机处于欠负荷状态,即发电机发出的功率大于用户用电功率,过时减少热负
7、荷发电机仍能维持正常运行。应尽量设法维持发电机正常运行,提高发电机组运行的可靠性。在选择保护方式及对其进行整定运行时,都必须考虑系统运行方式变化带来的影响。所选用的保护方式应在各种系统运行方式下都能满足选择性和灵敏性的要求。对过量保护来说,通常都是根据系统最大运行方式来确定保护的整定值,以保证选择性,因为只要在最大运行方式下能保证选择性,在其他运行方式下也一定能保证选择性;灵敏度的校验应根据最小运行方式来进行,因为只要在最小运行方式下,灵敏度符合要求,在其他运行方式下,灵敏度也一定能满足要求。对某些保护(例如电流电压连锁速断保护和电流速断保护),在整定计算时,还要按正常运行方式来决定动作值或计
8、算灵敏度。正常运行方式根据系统正常负荷的需要,投入与之相适应数量的发电机、变压器和线路的运行方式称为正常运行方式。这种运行方式在一年之内的运行时间最长。对更复杂的系统,最大、最小运行方式的判断是比较困难的,有时需要经过多次计算才能确定。对于某些特殊运行方式,运行时间很短,对保证保护的选择性或灵敏性有困难时,且在保护拒动或误动不会引起大面积停电的情况下,可不予考虑。最大运行方式根据系统最大负荷的需要,电力系统中的发电设备都投入运行(或大部分投入运行)以及选定的接地中性点全部接地的系统运行方式称为最大运行方式。对于继电保护来说,是短路时通过保护的短路电流最大的运行方式。最小运行方式根据系统最小负荷
9、,投入与之相适应的发电设备且系统中性点只有少部分接地的运行方式称为最小运行方式。对继电保护来说,是短路时通过保护的短路电流最小的运行方式。3章 计算3.1 短路电流计算说明各小型热电厂设计中,不仅要考虑正常运行的情况,而且要考虑发生故障的情况,最严重的是发生短路故障。一般情况下,最严重的短路故障是三相短路。仅当短路发生在发电机附近时,两相短路电流才有可能大于三相短路稳态电流,单相短路可能发生在中性点接地系统或中性点引出的四线制系统中。短路电流的热效应和电动力效应会使导体和电气设备损坏,甚至烧毁;短路电流的磁效应所产生的不对称的交变磁场,对输电线路附近的通信线路产生很大的电磁干扰;而短路电流造成
10、的电压降,有可能造成系统中部分发电机因功率送不出而过速,另一部分发电机因过载而减速,甚至造成系统解列,使异步电动机停运等等。由于短路时会产生上述严重后果,在小型热电厂设计中,首先应设法消除可能引起短路的各种因素。同时为减轻短路的严重后果和防止故障的扩大,则需要通过计算的短路电流来正确地选择和校验各种电气设备、截流导体、进行继电保护的书整定计算以及选用限制短路电流的设备,因为在电气主接线确定之后,主接线的计算即短路电流的计算乃是电厂设计的重要一环。 在进行短路计算中,应在下列前提条件下进行:确定短路电流时所采用的小型热电厂及电网的接线方式,应按可能发生最大短路正常接线方式,不考虑仅在切换过程中短
11、时出现的接线方式。一般要计算出系统最大运行方式和最小运行方式下的三相短路电流值。其计算短路点应选择在短路电流为最大地点。在继电保护计算中,不仅要用到最大运行方式下的三相短路电流值,尚须应用最小运行方式下的两相或单相短路电流值来校验灵敏度。电厂与电器连接的所有电源都在额定负荷下运行。应计算出对短路电流影响的所有元件(如发电机、变压器、电抗器及线路等)的电抗。对1kV及以上的高压电网忽略其电阻,仅当短路回路中的总电阻大于总电抗三分之一时,才计其电阻。忽略所有元件的电容和变压器的励磁电流, 并认为短路前三相系统是对称的。本次设计的热电厂与地区电力系统并网运行,所用的电力变压器的容量远小于系统的容量。
12、因此,短路电流,可按无限大容量系统进行计算。3.2短路电流计算3.2.1 元件标么阻抗计算 (取)需要公式:变压器: 发电机:电抗器:线路: 图31 主接线阻抗图(取)需要公式:变压器: 发电机:电抗器:线路: 李热线路 最大运行方式 最小运行方式 赵热线路 最大运行方式 最小运行方式 变压器 已知容量16000KVA 短路阻抗9% 台数:2台 发电机 已知额定容量15MW 额定电压6.3KV 功率因数0.8 次暂态电抗14.36 台数2台 电抗器 已知额定电流800A 额定电压6.3KV 短路电抗5.73% 台数2台 3.2.2 短路电流计算最大运行方式下短路电流:最小运行方式下短路电流:3
13、.3整定计算和灵敏度校验3.3.1 对66KV李热线进行整定计算(动作电流按躲过最大负荷电流来整定) 因为有两台主变,所以动作电流整定 可靠系数,一般去1.151.25 电流继电器返回系数,一般取0.85 自起动系数,其值大于1,有网络具体接线和负荷性质确定 最大负荷电流动作时间设定原则:按上下级配合3.3.2 对66KV李热线进行灵敏度校验李热线线路末端两相短路最小短路电流 因为,所以符合要求注: 在最小运行方式下被保护线路末端发生两相金属性短路时流经保护的电流 灵敏系数4章 保护配置在现代社会里,电力已成为国民经济和人民生活必不可少的二次能源。在实际运行中,经常会出现各种故障,如自然灾害、
14、设备缺陷以及人为因素都会造成事故发生。事故分为两类:一类例如雷击引起线路短路或接地;运行人员误操作造成发电机误跳闸;变压器的绝缘破坏会导致内部故障或高压侧与低压侧短路等,这些都被称为系统的电气元件事故;另一类是电气元件事故若不能及时处理,有时会导致电力系统发生振荡甚至失去稳定,造成大面积停电等,这类事故波及整个电力系统,故常被称为系统事故。任何一次或大或小的故障就有可能造成停电,都会给我们的生活、工作带来不便,造成国民经济的损失;特别是大的停电事故,损失往往不可估量。因此,如何保障电力系统无故障运行,以及故障自动解除、故障后自动恢复成为电力系统自动化的一个很重要的内容。为此,我们应该配备一定的
15、继电保护装置,保证系统的稳定运行。所谓继电保护装置是反应电力系统中各电气设备发生的故障或不正常工作状态,并用于断路器跳闸或发出报警信号的自动装置,它在电力系统中是必备的。对于保护装置的配置也是本次设计的主要内容。4.1 线路保护电力系统是发电机、变压器、输电线路以及负荷所组成的总体。因此,输电线路的保护也是至观重要的。4.1.1线路常见故障中性点不接地电网故障时的现象:1、发生接地后,全系统出现零序电压和零序电流。2、非故障线路保护安装处,流过本线路的零序电容电流。容性无功功率是由故障线路指向母线,即其功率方向与非故障线路方向相反。根据以上线路故障时出现的现象,DL40091规程对线路的保护配
16、置提出以下要求:1、110KV220KV直接接地电力网的线路,应装设反应相间短路和接地的保护。2、110KV线路宜采用远后备方式。3、对接地短路,应按下列之一装设保护:4、可采用姐弟距离保护,并辅之以阶段式或反时限零序电流保护5、对相间短路,应按下列装设保护装备6、单侧电源单回路,可装设三相电流电压保护,如不能满足要求,则装设距离保护。根据线路上出现故障时的现象,及规程要求,我为李热线配备了阶段式电流保护。4.1.2三段式电流保护无限时电流速断保护、限时电流速断保护、定时限过电流保护,它们各有优缺点,为了保证迅速可靠地切除故障,常常将无限时、限时电流速断及定时限过电流保护组合在一起,构成一整套
17、保护,使之相互补充和配合,成为三段式电流保护,并通常将无限时电流速断保护称为段,限时电流速断保护称为段,定时限过电流保护称为段。段和段保护共同组成线路的主保护,段保护作本线路段、段保护的近后备,也作为下一线路保护的远后备。以下图作为三段式电流保护工作原理分析。图41 三段式电流保护接线图保护采用不完全星形接线,它的第段保护由电流继电器1KA、2KA、信号继电器1KS组成;第段保护由电流继电器3KA、4KA、时间继电器KT1几信号继电器2KS组成;第段由电流继电器5KA、6KA、7KA、时间继电器2KT及信号继电器3KS组成。为了在Y,d接线变压器后两相短路时,提高段保护的灵敏性,采用了7KA电
18、流继电器。为了便于分析故障,各段均有信号继电器,任一段保护动作都作用同一出口继电器KCO跳三相。保护中各段是独立工作的,可以通过压板投用或停用其中的某段。在线路首端附近发生故障,由第段切除,线路末端附近发生短路故障,由第段切除,第段只起后备作用。因此输电线路任何处发生的短路故障,一般可在0.5s时限内优选则性的被切除。三段式电流保护不一定三段都全部投入,处在电网末端的输电线路,可能出现限时电流速断与过电流保护的动作时限相等的情况,此时,段可不必投入。4.1.3无限时电流速断保护电流速断保护根据对继电保护速动性的要求,在简单、可靠和保证选择性的前提下,原则上力求装设快速动作的保护。无限时电流速断
19、保护(又称I段电流保护)就是这样的保护,它是反应电流升高而不带时限的一种电流保护。其工作原理可用图42所示单侧电源线路的无时限电流保护为例来说明。图42中曲线表示系统在最大运行方式下三相短路时,流过保护的最大三相短路电流随L的变化曲线。曲线2表示系统在最小运行方式下两相短路时,流过保护的最小两相短路电流随L的变化曲线。无限时电流速断保护的选择性是靠动作电流来保证的,灵敏性是用其最小保护范围来衡量的,最小保护范围不应小于线路全厂的15%20%。无限时电流速断保护是有电流继电器KA,中间继电器KM和信号继电器KS组成。正常运行时,负荷电流流过线路,反应到电流继电器中的电流小于KA的动作电流,KA不
20、动作,起动合触点是断开的,KM动合触点也是断开的,信号继电器线圈和跳闸线圈TQ中无电流,断路器主触头闭合处正常送电状态。当线路短路时,短路电流超过保护动作电流,KA动合触点闭合起动中间继电器,中间继电器动合触点闭合将正电源接入KS线圈,并通过断路器的动合辅助触点QF1,接到跳闸线圈TQ构成通路,断路起跳闸后切除故障线路。图42 无限时电流保护作用原理图4.1.4限时电流速断保护由于无时限电流速断保护一般不能保护线路全长,无法切除本线路无实现电流速断保护范围以外的短路故障,为此增设了第二套电流速断保护必须带时限,一边和线路I段电流速断保护相配合,通常所带的时限只比瞬时电流速断保护大一个或两个时限
21、级差,所以称它为限时电流速断保护。此情况下,它的保护范围不超越相邻I段或段电流保护的范围。由于要求限时电流速断保护必须保护线路全场,这样它保护范围必然延伸到下一条线路。当下一条线路出口处发生短路故障时,它就会起动,若不采取措施,就会失去选择性。为此必须使保护带有一定时限,此时限的大小与其延伸的范围有关。为尽量缩短这一时限,通常使保护范围不超出相邻线路无时限电流速断保护的保护区,其动作时限则比相邻线路无时限电流速断保护高出一个时间级差。图43 限时电流速断保护工作原理图4.1.5定时限过电流保护限时电流速断保护虽能保护线路全长,但不能作为下一线路保护的后备。而定时限过电流保护不仅能保护线路全长,
22、还能保护相邻线路的全长,可以起到后备保护的作用。这是因为过电流保护不是按躲过某一短路电流,而是按躲过最大负荷电流来整定的,故它的动作电流值较低,灵敏度较高,保护范围大。同限时电流速断保护一样,定时限过电流保护也是适当选取动作电流和动作时限来获得选择性的。定时限过电流保护动作电流的整定原则,定时限过电流保护动作电流的整定要考虑以下两个条件:(1)为确保过电流保护在正常运行情况下不动作,保护装置的动作电流应整定得大于该线路上可能出现的最大负荷电流,即(2)在外部短路故障切除后,已动作的电流继电器能可靠返回。4.2 变压器保护4.2.1 变压器常见故障分析在供用电工程中,变压器占有很重要的地位。因此
23、,提高变压器工作的可靠性,对保证安全供电具有非常重要的意义。在考虑装设保护装置时,应充分估计到变压器可能发生的故障和不张厂运行方式,并根据变压器的容量和重要程度装设装用的保护装置。变压器的故障可分为内部故障和外部故障两类。内部故障只要是变压器绕组的相间短路 匝间短路和单相接地短路。内部故障是很危险的,因为短路电流产生的电弧不仅会破坏绕组的绝缘,烧毁铁芯,而且由于绝缘材料和变压器油受热分解会产生大量的气体,可能引起变压器油箱的爆炸。变压器最常见的外部故障包括引出线及绝缘套管处产生各种相间短路和接地故障。变压器的不正常工作情况有:由于外部短路或过负荷引起的过电流,油面降低和过励磁等。4.2.2 变
24、压器保护配置根据上述可能发生的故障和不正常运行状态,我为变压器配置了以下保护:1、为反应变压器油箱内部各种短路鼓掌和油面降低,对于0.8MVA及以上的油浸式变压器和0.4MVA以上变压器应装设与其瓦斯保护。本次设计的升压变压器容量为16MVA。因此在变压器上装设了瓦斯保护。2、为反应变压器绕组和引出线的相间短路,以及中性点直接接地电网侧绕组引出线的接地短路及绕组匝间短路,应装设纵差动保护或电流速断保护。对于6.3MVA及以上并列运行变压器和10MVA及以上单独运行变压器,以及6.3MVA及以上的厂用变压器,应装设纵差动保护。3、为反应外部相间短路引起的过电流和作为瓦斯、纵差保护(或电流速断保护
25、)的后备,应装设过电流保护。过电流的保护动作电流按最大负荷电流整定,灵敏度往往满足不了要求。低电压启动的过电流,它的电流元件可按变压器额定电流整定,保护灵敏度有所提高。若低电压继电器只装在变压器一侧,当在另一侧发生相间短路时,低电压继电器的灵敏度往往不够,因此采用了复合电压启动过电流保护。4、为反应过负荷应装设过负荷保护。在双绕组升压变压器上,过负荷保护通过在变压器的低压侧,即主电源侧。变压器保护原理说明:1、 变压器瓦斯保护瓦斯保护主要是由瓦斯继电器组成,它安装在油箱与油枕之间的管道上,如44图所示。FJ3-80型复合式瓦斯继电器结合左图所示。这类继电器有较好的防震性能。它是由挡板和开口杯复
26、合而成的,上下方各有一个带干簧触点的开口杯。正常时,上下开口杯都浸在油内。由于开口杯及附件在油内的策略所产生的力矩平衡锤4产生的力矩小,因此,开口杯处于上升位置,干簧触点3断开。当发生轻微故障时,分解出少量气体,此气体上升并聚集在瓦斯继电器上部,使瓦斯继电器中油面下降,上开口杯露出油面。此时,开口杯及附件在空气中的重力加上杯中油的重量,所产生的力矩大于在油中平衡锤所产生的力矩,因图44 变压器瓦斯保护结构图此,开口杯顺时针方向转动,带动磁铁靠近,使上方的干簧触点闭合,发出轻瓦斯动作信号。当发生严重故障时,产生大量气体,在气流和油流的冲击下,挡板带动下开口杯转动,使下干簧触点闭合,发出跳闸脉冲。
27、当严重漏油时,油面极度下降,与上开口杯动作原理相同,也可使下开口杯动作于跳闸。 工作原理:1是瓦斯继电器;2是信号继电器;3是出口继电器;4是联片。当变压器内部发生轻微故障时,有轻瓦斯产生,瓦斯继电器的上触点闭合,作用于至延时信号;发生严重故障时,重瓦斯冲出,瓦斯继电器的下触点闭合,经信号继电器,发出报警信号,同时通过联片使出口继电器动作使断路器跳闸。瓦斯继电器的下触点闭合,也可以利用切换片XB切换位置,只给出报警信号。为了消除复合式瓦斯继电器的下触点在发生重瓦斯时可能有跳动(接触不稳定)现象,出口继电器有自保持触点。只要瓦斯继电器的下触点一闭合,CKJ就动作并自保持。当断路器跳闸后,断路器的
28、辅助触点断开自保持回路,使CKJ恢复起始位置。 2、变压器纵差动保护 变压器纵差动保护单相原理接线图45所示。在变压器纵差动保护外部保护时一次侧流入的电流等于流出变压器的电流所以不平衡电流很小。差动继电器不动作。当D2点短路时此时流过差动回路的电流为。此时电流大于差动继电器动作电流,继电器动作跳闸。在实现变压器差动保护时,应考虑变压器高、低压两侧电流的大小和相位,一般讲它们都不同。故在实现变压器差动保护时,应先考虑对两侧电流进行相位补偿,再进行数值补偿,图45 变压器纵差动保护原理接线图都能保证正常运行和外部短路时继电器中的电流等于零(理想)。此外,在实现差动保护时,还应考虑两个特点,一个是变
29、压器励磁涌流,另一个是变压器差动保护的不平衡保护。 按环流法接线变压器纵差是利用比较变压器的高压侧和低压侧的电流和幅值和相位的原理构成的。它主要是由接于差动回路的三个差动继电器组成。为了扩大纵差保护范围,电流互感器应尽量靠近断路器。本设计的变压器容量为16MVA,因此采用的是BCH-2型差动继电器。她主要是用于两绕组或三绕组电力变压器以及变流发电机的单相差动保护线路中作为主保护,继电器能预防在非故障状态时出现的暂态电流的作用。BCH-2型差动继电器由两部分组成:DL-11型电流继电器和中间速饱和变流器。 当变压器正常运行或外部故障时,注入差动继电器的电流为不平衡电流。由于预先选择好两侧电流互感
30、器的变比和接线方式,故该不平衡电流值很小,注入电流继电器内的电流(为两侧电流互感器二次侧电流之差),保护不动作。当保护区内发生故障时,只要不平衡电流大雨继电器的启动电流,则继电器动作,瞬时使变压器的两侧断路器19DL和20DL跳闸。 注意:由于本设计变压器为两绕组变压器,接法为Y/D-11。所以变压器角型侧电流互感器为星型接法,变压器星型测侧电流互感器为角型接法。这样做可以补偿幅值和相位。 3、变压器过负荷保护 由于本次设计的变压器容量为16MVA属于中、小型变压器。所以采用的是定时限过负荷的保护,反应变压器三相对称过负荷,变压器的过负荷原理与发电机相似,也是由电流继电器和时间继电器SJ组成。
31、因为是反应三相对称过负荷,所以只需要在一相中接入电流继电器,动作都延时发出信号。正常运行时电流继电器不动作,当出现过负荷电流时,故障电流大于电流继电器动作值或定值,电流继电器动作时间继电器开始计时,到达设定时间都故障仍未消失,发出信号报警。 4、变压器复合电压起动电流 复合电压起动的过电流保护原理图与发电机相似。复合电压起动的过电流保护主要装设在升压变压器的低她侧,电压起动元件是由低电压继电器YJ和负序电压继电器FYJ组成,YJ的线圈经过FYJ的常闭触点接于电压。当发生三相短路时,短路初瞬间会出现负序电压,FYJ动作,断开加在低压继电器YJ上的电压,从而使YJ动作。负序电压消失后,虽然低电压继
32、电器重新接于线电压上,但由于三相短路电压较低,不能返回而处于动作状态。 当发生不对称短路时,故障相电流继电器动作,负序电压继电器动作,致使YJ动作,起动BZJ。相电流继电器通过BZJ常开触点起动时间继电器SJ,经整定延时起动信号和出口继电器,将发电机出口短路器断开。为防止外部短路引起的过电流和作为变压器纵差动保护、瓦斯保护的后备,变压器应装设后备保护。后备保护的方案有过电流保护、复合电压启动过电流保护、负序过电流保护和低压阻抗保护等。4.3 发电机保护4.3.1 发电机的故障类型及不正常运行状态发电机的故障类型有:定子绕组相间短路;定子绕组一相的匝间短路;定子绕组单相接地;转子绕组一点接地或两
33、点接地;转子励磁回路励磁电流消失。 发电机运行中定子绕组有可能发生相间(两相或三相)短路,短路电流流过故障点可能产生高温电弧烧毁发电机,甚至引起火灾。发电机定子绕组还可能发生一相匝间短路,这种故障的机会虽然不多,但一旦发生将产生很大环流,引起故障处温度升高,从而使绝缘老化,甚至击穿绝缘发展为单相接地或相间短路,扩大发电机损坏范围。发电机定子绕组一点接地,由于没有构成电流通路,对发电机没有直接危害,但若再发生另一点接地时,就造成两点接地,从而使转子绕组被短接,不但会烧毁转子绕组,而且由于部分绕组短接会破坏磁路的对称性,引起发电机的强烈振动,尤其是凸极转子的水轮发电机和同步调相机两点短路,特别危险
34、。 发电机的不正常运行状态主要有:由外部短路引起的定子绕组过电流;由于负荷超过发电机额定容量而引起的三相对称过负荷;由外部不对称短路或不对称负荷(如单相负荷,非全相运行等)而引起的发电机负序过电流和过负荷;由于突然甩负荷而引起的定子绕组过电压;由于励磁回路故障或强励时间过长而引起的转子绕组过负荷;由于汽轮机主汽门突然关闭而引起的发电机逆功率等。 对于上述故障和不正常运行状态,根据继电保护和安全自动装置技术规程汇编的规定,我为发电机配置了以下保护:(1)针对发电机定子绕组和引出线上的相间短路,1MW以上的发电机应装设纵联差动保护。(2)对发电机变压器组应装设保护区不小于90%的定子接地保护。保护
35、装置带时限动作于信号,根据系统情况和发电机绝缘状态,亦可动作于停机。(3)对发电机定子绕组过负荷应装设过负荷保护。保护装置接一相电流,带时限动作于信号。(4)对发电机外部相间短路故障和作为发电机主保护的后备,其装设的保护应符合下列规定:1MW以上的发电机,宜装设低压闭锁或复合电压起动的过电流保护。电流元件的动作电流,可取额定值的1.31.4倍;低电压元件接线电压,其动作电压,对汽轮发电机可取额定值的0.6倍,对水轮发电机可取额定值的0.7倍。负序电压元件的动作电压,可取额定值的0.060.12倍。4.3.2 发电机保护配置发电机的保护方案:发电机的主保护:(1)发电机的纵联差动保护;(2)发电
36、机的定子接地保护;(3)发电机的过负荷保护;发电机的后备保护:复合电压起动过电流保护。保护原理说明:1、发电机纵差保护发电机纵差是利用比较发电机中性点侧和引出线侧的电流和幅值和相位的原理构成的。它主要是由接于差动回路的三个差动继电器和一个接于中线的电流继电器组成。当在1LH和2LH的保护范围内出现故障时,故障相的差动继电器动作,假设是1CJ动作,则1CJ常开触电闭合令信号继电器得电,发出信号;同时出口(1)发电机纵差保护 继电器CKJ也得电,其常开触电闭合,发出指示给灭磁开关MK和发电机出口断路器的控制继电器TQ。进行灭磁和出口断路器打开。CJJ断线监视继电器的作用是在断线时,发出报警信号通知
37、运行人员。为了扩大纵差保护范围,电流互感器2LH应尽量靠近DL。本次设计的发电机容量为30MW,因此采用的是BCH-2E型差动继电器。它主要是用于两绕组或三绕组电力变压器以及变流发电机的单相差动保护线路中作为主保护,继电器能预防在非故障状态时出现的暂态电流的作用。 当发电机正常运行或外部故障时,注入差动继电器的电流为不平衡电流。由于预先选择好两侧电流互感器的变比和接线方式,故该不平衡电流值很小,注入电流继电器内的电流(为两侧电流互感器二次侧电流之差),保护不动作。当保护区内发生故障时,只要不平衡电流大于继电器的起动电流,则继电器动作,瞬时使发电机的出口断路器DL跳闸。图46 采用BCH-2型继
38、电器及带有断线监视装置的发电机纵差保护原理接线图 BCH-2E型差动继电器由两部分组成:DL-11E型电流继电器和中间速饱和变流器。速饱和变流器是利用励磁涌流中含有大量的非周期分量这一特点来躲开励磁涌流的影响而设计的。BCH-2E型差动继电器中两个平衡线圈和分别接在差动保护的两个臂上,差动线圈接在差动回路中。二次线圈接继电器线圈。、和都有抽头可以调节,用作继电器的整定和调节。它们的匝数选择和连接极性应在正常运行和外部故障时使中间铁芯的磁势为0,这样可使两臂引起的不平衡电流得到平衡。在内部故障时,中间铁柱两个平衡线圈产生的磁势方向与差动线圈产生的磁势方向相同,且平衡线圈变为动作线圈,使继电器动作
39、得到可靠的保证。 2、发电机定子接地 本设计的定子接地保护是反应基波零序电压的接地保护(保护发电机90%-95%的接地保护)。反应基波零序电压的保护接线如图所示,它是由过电流继电器(经3次谐波滤过器)接在三相五柱式电压互感器二次侧的开口三角形上。正常运行时,若不考虑电压互感器误差,开口三角侧无电压输出。但实际上电压互感器是存在误差的。所以,在正常运行时,开口三角侧有反应;除此之外发电机3次谐波电压也会在开口三角侧有反应;另外,当变压器高压侧发生接地时,高、低压绕组间存在耦合电容,因而在发电机侧也会有零序电压。所以,为使正常地接地不误动作,接地保护动作电压应躲过这三部分电压之和形成图47 反应零
40、序电压的发电机接地保护的零序电压来整定,继电器动作电压在15-30伏左右(经验值)。这样,在靠中性点附近有死区,此电压范围为15%-30%。当经3次谐波滤过器接继电器时,动作电压为5-6伏。死区仅为5%,则成为发电机95%的接地保护。 3、发电机过负荷保护 图48 发电机过负荷保护原理接线图由于本次设计的发电机为小型发电机,容量为30MW,采用的是过负荷保护。反应定子绕组三相对称过负荷,由电流继电器LJ和时间继电器SJ组成。因为是反应三相对称过负荷,所以只需在一相中接入电流继电器,动作后延时发出信号。正常运行时电流继电器不动作,当出现过负荷电流时,故障电流大于电流继电器动作值或定值,电流继电器
41、动作时间继电器开始计时,到达设定时间后故障仍未消失,发出信号。如图48所示。 4、发电机的复合电压起动过电流保护 复合电压起动的过电流保护原理如图49所示。电压起动元件是由低电压继电器YJ和负序电压继电器FYJ组成。YJ的线圈经过FYJ的常闭触点接于线电压。这样接法可提高三相短路时YJ的灵敏度。当发生三相短路时,短路初瞬总会出现负序电压,FYJ动作,断开加在低压继电器YJ上的电压,从而使YJ动作。负序电压消失后,虽然低电压继电器重新接于线电压上,但由于三相短路电压较低,不能返回而处于动作状态。图49 发电机的复合电压启动的过电流保护原理接线图 当发生不对称短路时,故障相电流继电器动作,负序电压
42、继电器动作,致使YJ动作,起动ZJ。相电流继电器通过ZJ常开触点起动时间继电器SJ,经整定延时起动信号和出口继电器,将发电机出口断路器断开。4.4 母线的保护配制电力系统中的母线是具有很多进、出线的公共电气连接点,它起着汇总和分配电能的作用。所以,发电厂和变电所中的母线是电力系统中的一个重要组成元件。母线运行是否安全可靠,将直接影响发电厂、变电所和用户工作的可靠性,在枢纽变电所的母线上发生故障时,甚至会破坏整个系统稳定。引起母线短路故障的主要原因有:由于空气污秽,导致短路器套管及母线绝缘子的闪络;母线电压和电流互感器的故障;运行人员的误操作,如带负荷拉隔离开关、带接地线合短路器等。4.4.1母
43、线故障类型母线故障的类型,主要是单相接地和相间短路故障。与输电线路故障相比较,母线故障的几率较小,但其造成的后果却十分严重。因此必须采取措施来消除或减少母线故障所造成的后果。4.4.2母线的保护配制一般来说,为切除母线故障,可采用一下两种方式:1、利用母线上其他供电元件的保护装置来切除故障。2、采用专门的母线保护。母线完全差动保护要求连接于母线上的全部元件都装设电流互感器。这对于出线很多的666KV母线,要实现完全差动保护就很困难。因为,其一是设备费用贵,其二是使保护接线复杂。为了解决上诉问题,可根据母线的重要程度,采用不完全差动保护。我为66KV母线配备了不完全差动保护母线不完全差动保护的工
44、作原理:为实现母线不完全差动保护,则只需在电源的元件上装设变比和特性完全相同的D级电流互感器。只在发电机、变压器、分段断路器(母联断路器)上装设电流互感器,且电流互感器只装设在A、C两相上,按差动原理连接,在差动回路中接入差动继电器。因没有将所有连接元件都接入差动回路,故称不完全电流差动保护。正常运行时,差动继电器中流过的是各馈电线路负荷电流之和;馈电线路上发生短路故障时,差动继电器流过的是短路电流。总 结转眼间,为期9周的毕业设计就要结束了,随着时间的临近,我的求学生涯也将画上句号。再此,我对这些日子的学习做以总结:本次毕业设计的题目是215MW热力发电厂继电保护、自动装置及二次回路进行设计
45、。首先,对设计题目进行整体的粗略分析并查找资料完成开题报告。其次,本次设计核心主要包括热电厂运行方式分析、短路电流计算、电厂各设备继电保护及自动装置的配置、整定计算、保护动作行为分析、相关图纸的绘制、外文资料翻译等等内容。以上是我9周以来的毕业设计成果。本次毕业设计中我结合了大学三年中所学过的各科课程的理论知识,通过指导教师的悉心指教,我了解了发电厂设计的基本方法,培养了独立分析和解决实际工程技术问题的方法和能力,同时对电力方面有关政策、方针和技术规程有了一定的了解,在绘图和编号等方面得到了训练。9周的时间里,在指导老师的耐心帮助和精心指导下我懂得了不少知识,完成了本次设计。在此我要诚挚的感谢我的指导老师,并道一声:“您辛苦了!”。致 谢在我毕业设计即将结束之际,我有很多感谢。首先,我要感谢我的指导老师岳军老师,在我毕业论文的整个设计过程当中,岳老师给了我很大的帮助,每当我的论文遇到困难无法进行下去时,岳老师总会为我提供各种宝贵的意见,使我的论文得以顺利进行,在此,我还要感