“等时圆”大全(个人汇集整理)要点.doc

上传人:牧羊曲112 文档编号:3982452 上传时间:2023-03-30 格式:DOC 页数:18 大小:852KB
返回 下载 相关 举报
“等时圆”大全(个人汇集整理)要点.doc_第1页
第1页 / 共18页
“等时圆”大全(个人汇集整理)要点.doc_第2页
第2页 / 共18页
“等时圆”大全(个人汇集整理)要点.doc_第3页
第3页 / 共18页
“等时圆”大全(个人汇集整理)要点.doc_第4页
第4页 / 共18页
“等时圆”大全(个人汇集整理)要点.doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

《“等时圆”大全(个人汇集整理)要点.doc》由会员分享,可在线阅读,更多相关《“等时圆”大全(个人汇集整理)要点.doc(18页珍藏版)》请在三一办公上搜索。

1、巧用“等时圆”解物理问题“等时圆”模型的基本规律及应用(此文章已发表于考试杂志)前段时间在网上发了一个帖子“等时圆规律有哪些应用”,居然有同志认为是“等势圆”吧。而在物理教学中,借助各种模型,把抽象问题具体化,把复杂问题简单化,能使得物理问题便于理解和接受。基于此我对“等时圆”规律和应用阐述如下:一、何谓“等时圆”奇妙的等时圆2004年全国高考理科综合第15题的解析与应用从一道高考题得到的一个重要结论及其应用图12004年高考试题:如图1所示,ad、bd、cd是竖直面内三根固定的光滑细杆,a、b、c、d位于同一圆周上,a点为圆周的最高点,d点为最低点。每根杆上都套有一个小滑环(图中未画出),三

2、个滑环分别从a、b、c处释放(初速为0),用t1、t2、t3依次表示各滑环到达d所用的时间,则()A.t1t2t2t3 C.t3t1t2 D.t1=t2=t3 解析:选任一杆上的环为研究对象,受力分析并建立坐标如图所示,设圆半径为R,由牛顿第二定律得, 再由几何关系,细杆长度 设下滑时间为,则 图2由以上三式得, 可见下4滑时间与细杆倾角无关,所以D正确。由此题我们可以得出一个结论。结论:物体沿着位于同一竖直圆上的所有光滑弦由静止下滑,到达圆周最低点的时间相等。推论:若将图1倒置成图2的形式,同样可以证明物体从最高点由静止开始沿不同的光滑细杆到圆周上各点所用的时间相等。(1)物体沿着位于同一竖

3、直圆上的所有光滑弦由静止下滑,到达圆周最低点时间均相等,且为t2(如图甲所示)(2)物体沿着位于同一竖直圆上的所有过顶点的光滑弦由静止下滑,到达圆周低端时间相等为t2(如图乙所示)象这样的竖直圆我们简称为“等时圆”。关于它在解题中的应用,我们看下面的例子:一、 等时圆模型(如图所示)图a 图b 二、 等时圆规律:1、小球从圆的顶端沿光滑弦轨道静止滑下,滑到弦轨道与圆的交点的时间相等。(如图a)2、小球从圆上的各个位置沿光滑弦轨道静止滑下,滑到圆的底端的时间相等。(如图b)3、沿不同的弦轨道运动的时间相等,都等于小球沿竖直直径()自由落体的时间,即 (式中R为圆的半径。)三、等时性的证明设某一条

4、弦与水平方向的夹角为,圆的直径为(如右图)。根据物体沿光滑弦作初速度为零的匀加速直线运动,加速度为,位移为,所以运动时间为 即沿各条弦运动具有等时性,运动时间与弦的倾角、长短无关。规律AB、AC、AD是竖直面内三根固定的光滑细杆,A、B、C、D位于同一圆周上,A点为圆周的最高点,D点为最低点.每根杆上都套着一个光滑的小滑环(图中未画出),三个滑环分别从A处由静止开始释放,到达圆周上所用的时间是相等的,与杆的长度和倾角大小都无关. 推导设圆环沿细杆AB滑下,过B点作水平线构造斜面,并设斜面的倾角为,如图2所示,连接BD.根据牛顿第二运动定律有环的加速度a=gsin,由几何关系有AB=x=2Rsi

5、n,由运动学公式有x=12at2,解得:环的运动时间t=2Rg,与倾角、杆长无关,所以环沿不同细杆下滑的时间是相等的.说明1 如果细杆是粗糙的,环与细杆间的动摩擦因数都为,由运动学公式有2Rsin=12(gsingcos)t2,解得t=2Rsingsingcos=2Rggcot,增大,时间t减小,规律不成立.二、“等时圆”的应用,巧用等时圆模型解题对于涉及竖直面上物体运动时间的比较、计算等问题可考虑用等时圆模型求解图3A1、 可直接观察出的“等时圆”例1:如图3,通过空间任一点A可作无限多个斜面,若将若干个小物体从点A分别沿这些倾角各不相同的光滑斜面同时滑下,那么在同一时刻这些小物体所在位置所

6、构成的面是( )A.球面 B.抛物面 C.水平面 D.无法确定解析:由“等时圆”可知,同一时刻这些小物体应在同一“等时圆”上,所以A正确。【变式训练1】如图所示,AB和CD是两条光滑斜槽,它们各自的两端分别位于半径为R和r的两个相切的竖直圆上,并且斜槽都通过切点P.设有一个重物先后沿斜槽从静止出发,从A滑到B和从C滑到D,所用的时间分别等于t1和t2,则t1和t2之比为()A21 B11 C.31 D12图8例4:圆O1和圆O2相切于点P,O1、O2的连线为一竖直线,如图8所示。过点P有两条光滑的轨道AB、CD,两个小物体由静止开始分别沿AB、CD下滑,下滑时间分别为t1、t2,则t1、t2的

7、关系是()A.t1t2 B.t1=t2 C.t1 ta ;c做自由落体运动tc= ;而d球滚下是一个单摆模型,摆长为R,td= ,所以C正确。tbtatdtc.解【析】如图所示,令圆环半径为R,则c球由C点自由下落到M点用时满足Rgt,所以tc ;对于a球令AM与水平面成角,则a球下滑到M用时满足2Rsin gsin t,即ta2;同理b球从B点下滑到M点用时也满足tb2(r为过B、M且与水平面相切于M点的竖直圆的半径,rR)综上所述可得tbtatc.三个相同小球从a点沿ab、ac、ad三条光滑轨道从静止释放,哪个小球先运动到最低点?解析:设斜面侧边长为,倾角为,则物体沿光滑斜面下滑时加速度为

8、,物体的位移为。物体由斜面顶端由静止开始运动到底端,由运动学公式得,得, 、一定,所以越大时,下滑所用时间越短 奇妙的等时圆2004年全国高考理科综合第15题的解析与应用图1从一道高考题得到的一个重要结论及其应用2004年高考试题:如图1所示,ad、bd、cd是竖直面内三根固定的光滑细杆,a、b、c、d位于同一圆周上,a点为圆周的最高点,d点为最低点。每根杆上都套有一个小滑环(图中未画出),三个滑环分别从a、b、c处释放(初速为0),用t1、t2、t3依次表示各滑环到达d所用的时间,则()A.t1t2t2t3 C.t3t1t2 D.t1=t2=t3 图2解析:选任一杆上的环为研究对象,受力分析

9、并建立坐标如图2,由牛顿第二定律得, 由几何关系,细杆长度 设下滑时间为,则 图3由以上三式得, 可见下滑时间与细杆倾角无关,所以D正确。若将图1倒置成图3的形式,同样可以证明物体从最高点由静止开始沿不同的光滑细杆到圆周上各点所用的时间相等。结论:物体沿着位于同一竖直圆上的所有光滑弦由静止下滑,到达圆周最低点的时间相等。图4物体沿着位于同一竖直圆上的过顶点的所有光滑弦由静止下滑,到达圆周低端的时间相等。我们把这两种圆叫做“等时圆”,下面举例说明“等时圆”的应用。例1:如图4所示,通过空间任一点A可作无限多个斜面,若将若干个小物体从点A分别沿这些倾角各不相同的光滑斜面同时滑下,那么在同一时刻这些

10、小物体所在位置所构成的面是()A.球面 B.抛物面 C.水平面 D.无法确定图5解:由“等时圆”可知,同一时刻这些小物体应在同一“等时圆”上,所以A正确。例2:两光滑斜面的高度都为h,甲、乙两斜面的总长度都为l,只是乙斜面由两部分组成,如图5所示,将两个相同的小球从斜面的顶端同时由静止释放,不计拐角处的能量损失,问哪一个球先到达斜面底端?图6解:构想一辅助圆如图6所示:在AF上取一点O,使OA=OC,以O点为圆心,以OA为半径画圆,此圆交AD于E点。由“等时圆”可知,由机械能守恒定律可知:,所以。又因为两斜面的总长度相等,所以,根据得,所以有,即乙球先到达斜面底端。图11图122.在离坡底B为

11、10cm的山坡面上竖直地固定一根直杆,杆高OA也是10cm。杆的上端A到坡底B之间有钢绳,一穿心于钢绳上的物体(如图11)从A点由静止开始沿钢绳无摩擦地滑下,求它在钢绳上滑行时间(g=10m/s2)答案:如图12,把AO延长到C,使OC=OA=10cm,则点O到A、B、C三点的距离相等。以O为圆心,OA为半径作圆,则B、C一定在该圆的圆周上,由结论可知,物体从A到B的时间与从A到C的时间相等,即s。AOBC30 图1【例1】倾角为30的长斜坡上有C、O、B三点,CO = OB = 10m,在C点竖直地固定一长10 m的直杆AO。A端与C点间和坡底B点间各连有一光滑的钢绳,且各穿有一钢球(视为质

12、点),将两球从A点由静止开始、同时分别沿两钢绳滑到钢绳末端,如图1所示,则小球在钢绳上滑行的时间tAC和tAB分别为(取g = 10m/s2) A2s和2s B 和 2s C和4s D4s 和图2AOBC30 12D解析:由于CO = OB =OA ,故A、B、C三点共圆,O为圆心。又因直杆AO竖直,A点是该圆的最高点,如图2所示。两球由静止释放,且光滑无摩擦,满足“等时圆”条件。设钢绳AB和AC与竖直方向夹角分别为1、2,该圆半径为r,则对钢球均有解得:, 钢球滑到斜坡时间t跟钢绳与竖直方向夹角无关,且都等于由A到D的自由落体运动时间。代入数值得t=2s,选项A正确。2、运用等效、类比自建“

13、等时圆”例3:如图5所示,在同一竖直线上有A、B两点,相距为h,B点离地高度为H,现在要在地面上寻找一点P,使得从A、B两点分别向点P安放的光滑木板,满足物体从静止开始分别由A和B沿木板下滑到P点的时间相等,求O、P两点之间的距离。图6ABPHhOO1ABPHhO图5解析:由“等时圆”特征可知,当A、B处于等时圆周上,且P点处于等时圆的最低点时,即能满足题设要求。如图6所示,此时等时圆的半径为: 所以 OABLLD图2 例2:如图2,在斜坡上有一根旗杆长为L,现有一个小环从旗杆顶部沿一根光滑钢丝AB滑至斜坡底部,又知OB=L。求小环从A滑到B的时间。【解析】:可以以O为圆心,以 L为半径画一个

14、圆。根据“等时圆”的规律可知,从A滑到B的时间等于从A点沿直径到底端D的时间,所以有例2、在一竖直墙面上固定一光滑的杆AB,如图所示,BD为水平地面,ABD三点在同一竖直平面内,且连线AC=BC=0.1m 一小球套在杆上自A端滑到B端的时间为:( B )A 0.1s B 0.2s C D s解析:以C为圆心作一个参考园。由结论知,小球自A到B运动的时间与自A到B自由落体运动的时间相等。即AE=2R=0.2mAE=gt t=0.2s4、如图4所示,在离坡底15m的山坡上竖直固定一长15m的直杆AO,A端与坡底B间连有一钢绳,一穿于钢绳上的小球从A点由静止开始沿钢绳无摩擦地滑下,求其在钢绳上滑行的

15、时间t。. 图4例5、图甲是某景点的山坡滑道图片,为了探究滑行者在滑道直线部分AE滑行的时间技术人员通过测量绘制出如图乙所示的示意图AC是滑道的竖直高度,D点是AC竖直线上的一点,且有ADDE10 m,滑道AE可视为光滑,滑行者从坡顶A点由静止开始沿滑道AE向下做直线滑动,g取10 m/s2,则滑行者在滑道AE上滑行的时间为()A. sB2 sC. s D2 s【解析】AE两点在以D为圆心、半径为R10 m的圆上,在AE上的滑行时间与沿AD所在的直径自由下落的时间相同,t 2 s,选B.例4、如图所示,圆弧AB是半径为R的圆弧,在AB上放置一光滑木板BD,一质量为m的小物体在BD板的D端由静止

16、下滑,然后冲向水平面BC,在BC上滑行L后停下不计小物体在B点的能量损失,已知小物体与水平面BC间的动摩擦因数为.求:小物体在BD上下滑过程中重力做功的平均功率【解析】由动能定理可知小物体从D到C有WGmgL0,所以WGmgL由等时圆知识可知小物体从D到B的时间等于物体从圆周的最高点下落到B点的时间,即为t ,所以小物体在木板BD上下滑过程中,重力做功的平均功率为P.图7例3:如图7,一质点自倾角为的斜面上方的定点O沿光滑斜槽OP从静止开始下滑,为使质点从O点滑到斜面的时间最短,则斜槽与竖直方向的夹角应为多大?解:如图7,作以OP为弦的辅助圆,使圆心O/与O的连线在竖直线上,且与斜面相切于P点

17、。由“等时圆”可知,唯有在O点与切点P点架设的斜槽满足题设条件,质点沿其它斜槽滑至斜面的时间都大于此时间。由图可知,又为等腰三角形,所以。 PAB图8CO例4:如图7, AB是一倾角为的输送带,P处为原料输入口,为避免粉尘飞扬,在P与AB输送带间建立一管道(假使光滑),使原料从P处以最短的时间到达输送带上,则管道与竖直方向的夹角应为多大?AB图7P解析:借助“等时圆”,可以过P点的竖直线为半径作圆,要求该圆与输送带AB相切,如图所示,C为切点,O为圆心。显然,沿着PC弦建立管道,原料从P处到达C点处的时间与沿其他弦到达“等时圆”的圆周上所用时间相等。因而,要使原料从P处到达输送带上所用时间最短

18、,需沿着PC建立管道。由几何关系可得:PC与竖直方向间的夹角等于/ 2。【例4】MP图7如图7所示,在同一竖直平面内,从定点P到固定斜面(倾角为)搭建一条光滑轨道PM,使物体从P点释放后,沿轨道下滑到斜面的时间最短,则此轨道与竖直线的夹角为多少?解析:先用解析法求解。从定点P向斜面作垂线,垂足为D,如图8所示,设P到斜面距离为h,则轨道长度为物体沿轨道下滑的加速度MP图8Dh由于联立解得:令根式中分母,利用积化和差得:,一定,当时,分母y取得最大值,物体沿轨道下滑的时间t最小。再用“等时圆”作图求解。以 定点P为“等时圆”最高点,作出系列半径r不同(动态的)“等时圆”,所有轨道的末端均落在对应

19、的“等时圆”圆周上,如图9中甲所示,则轨道长度均可表示为物体沿轨道下滑的加速度由于,故得:,图9P 1M1M22PM2甲乙欲t最小,则须“等时圆”的半径r最小。显然,半径最小的“等时圆”在图中与斜面相切于M2点,如图9中乙所示。再根据几何关系可知:。PHL图10在这里,用了转化的思想,把求最短时间转化为求作半径最小的“等时圆”,避免了用解析法求解的复杂计算。图5 例4:如图5所示,在倾角为的传送带的正上方,有一发货口A。为了使货物从静止开始,由A点沿光滑斜槽以最短的时间到达传送带,则斜槽与竖直方向的夹角应为多少?图6【解析】:如图6所示,首先以发货口A点为最高点作一个圆O与传送带相切,切点为B

20、,然后过圆心O画一条竖直线,而连接A、B的直线,就是既过发货口A,又过切点B的惟一的弦。 根据“等时圆”的规律,货物沿AB弦到达传送带的时间最短。因此,斜槽应沿AB方向安装。AB所对的圆周角为圆心角的一半,而圆心角又等于,所以。如图3所示,在一个坡面与水平面成=40角的山坡AB的脚下A处有一个高塔,为防止意外,需要在塔顶O与山坡之间搭一个滑道,以便塔上的人能尽快沿滑道滑到山坡上.假设滑道光滑,试求滑道与山坡坡面AB的夹角多大?解析 如图4所示,过O点作一条水平线与山坡交于B点,过B点作ABO的角平分线,交过O点作的竖直线于点C,以点C为圆心、OC为半径作圆与山坡相切于点D,连接OD、CD.根据

21、上述结论可知:人从O点出发沿滑道到达圆上的时间是相等的,沿滑道O已到达山坡,沿其他滑道还要再走一段距离才能到达山坡,所以人沿滑道OD到达山坡所用时间最短,此时夹角=90=70.另解 如图5所示,过点O作山坡的垂线OD,设其长度为x.过点O画直线OE,作为滑道,设其与竖直方向的夹角为.由几何知识可知滑道的长度OE=xcos(),由牛顿第二运动定律得人运动的加速度为a=gsin(90),由运动学公式有xcos()=12gcost2,解得t=2xgcoscos(),其中coscos()=12cos+cos(2),所以当2=40时,时间取得最小值,此时夹角=90=70.三、 “形似质异”问题的区分如图

22、1所示,ad、bd、cd是竖直面内三根固定的光滑细杆,a、b、c、d位于同一圆周上,a点为圆周的最高点,d点为最低点。每根杆上都套有一个小滑环(图中未画出),三个滑环分别从a、b、c处释放(初速为0),用t1、t2、t3依次表示各滑环到达d所用的时间,则( )图1xymgA.t1t2t2t3 C.t3t1t2 D.t1=t2=t3 解析:选任一杆上的环为研究对象,受力分析并建立坐标如图所示,设圆半径为R,由牛顿第二定律得, 再由几何关系,细杆长度 设下滑时间为,则 图2由以上三式得, 可见下4滑时间与细杆倾角无关,所以D正确。由此题我们可以得出一个结论。结论:物体沿着位于同一竖直圆上的所有光滑

23、弦由静止下滑,到达圆周最低点的时间相等。推论:若将图1倒置成图2的形式,同样可以证明物体从最高点由静止开始沿不同的光滑细杆到圆周上各点所用的时间相等。象这样的竖直圆我们简称为“等时圆”。关于它在解题中的应用,我们看下面的例子:【例1】还是如图1的圆周,如果各条轨道不光滑,它们的摩擦因数均为,小滑环分别从a、b、c处释放(初速为0)到达圆环底部的时间还等不等?解析:bd的长为2Rcos,bd面上物体下滑的加速度为a=gcos-gsin,tbd=2。可见t与有关。aObcd图3【例2】如图3所示,Oa、Ob、Oc是竖直平面内三根固定的光滑细杆,O、a、b、c四点位于同一圆周上,d点为圆周的最高点,

24、c为最低点,每根杆上套着一个小滑环(图中未画出),三个滑环都从图中O点无初速释放,用t1、t2 、t3、依次表示滑到a、b、c所用的时间,则A BC D. cbadOefg图4解析:如果不假思索,套用结论,就会落入“陷阱”,错选A。必须注意,“等时圆”的适用条件是:光滑斜面上初速为零的匀加速直线运动,且运动起点(或终点)应在“等时圆”的最高(或最低)点。题图中O不是最高点,题设圆不是“等时圆”。现以O点为最高点,取合适的竖直直径Oe,作“等时圆”交Ob于b,如图4所示,显然,O到f、b、g、e才是等时的,比较图示位移OaOf,OcOg,故可推知,正确的选项是B。C图5D【例3】如图5所示,在竖

25、直面内有一圆,圆内OD为水平线,圆周上有三根互成的光滑杆、,每根杆上套着一个小球(图中未画出)。现让一个小球分别沿三根杆顶端无初速下滑到O,所用的时间分别为、,则( )A B C D 无法确定BCB/C/图6D解析:题设图中O点不在圆的最低点,故不是“等时圆”。延长OA,过B作B/BBO,则O、B、B/在同一圆周上,B/处自由下落到O的时间和小球沿光滑杆由B无初速滑到O的时间相同。同理,过C作C/CCO,则O、C、C/在同一圆周上,C/处自由下落到O的时间和小球沿光滑杆由C无初速滑到O的时间相同。C/、B/、A自由下落到O的时间依次递减,故选项B正确。3 延伸如图6所示,AB、AC、AD是竖直

26、面内三根固定的光滑细杆,A、B、C、D位于同一圆周上,O点为圆周的圆心,A点不是圆的最高点.每根杆上都套着一个光滑小滑环(图中未画出),三个滑环分别从A处从静止开始释放,用t1、t2、t3依次表示滑环到达B、C、D所用的时间,则三个时间的关系是什么?解析 A不在圆的最高点,前面的结论直接用是不行的.可以采用如下的方法解决.如图7所示,过点A作竖直线交AB的垂直平分线于点O1,以O1为圆心、O1A为半径画圆交AB于B、分别交AC、AD的延长线于C1、D1.在圆ABC1D1中用前面的结论可知 ,所以t1t2.不可以根据CC1另解 假设圆的半径为R,建立如图8所示的直角坐标系.连接AO并假设其与x轴

27、的夹角为,则A点的坐标为(Rcos,Rsin).设直线AB与x轴的夹角为,则直线AB的斜率为k=tan,直线AB的方程为ysin=tan(xcos),整理变形有xtany+sintancos=0,由数学知识可知,坐标原点到直线AB的距离为OE=|sintancos|1+tan2,由几何知识解得BE2=R2(1sin2+tan2cos22sincostan1+tan2),整理得BE=(coscos+sinsin)R,由牛顿第二运动定律有环的加速度a=gsin,由运动学公式有2BE=12gsint2,解得小环运动时间为t=4R(coscos+sinsin)gsin=4Rg(coscot+sin),

28、所以增大,时间减小,t1t2t3.当式中=90时,t=2Rg,与倾角、杆长无关,就是前面推导的等时圆规律.说明2 如果细杆是粗糙的,环与细杆间的动摩擦因数都为.环处于加速下滑的条件是2BE=12(gsingcos)t2,解得环运动时间t=4R(coscos+sinsin)gsingcos,变形为t=4Rg(costan+sin1tan),由此式可知:增大,时间t减小,即t1t2t3.当式中=90或=90、=0时,时间t=2Rg.可见等时圆规律适用的条件是:细杆光滑、A点为圆周的最高点或最低点. 四、比较应用等时圆模型解典型例题图9如图9,底边为定长b的直角斜面中,球从光滑直角斜面顶端由静止滑到

29、底端,至少需要多少时间?图10答案:用作图求解。如图10,以b为半径、O为圆心作一个圆,作出圆的一条竖直切线MN,于圆切于D点。A点为所作圆的最低点。由图可看出:从MN上不同的点由静止滑到A点,以DA时间为最短。(由“等时圆”可知,图中E/、D、C/各点到达A的时间相等。)所以小球从底边b为定长的光滑直角斜面上滑下时以45的时间为最少,而且此时间与球从P点自由下落到圆最低点的时间相等。所以。2. 有三个光滑斜轨道1、2、3,它们的倾角依次是600,450和300,这些轨道交于O点现有位于同一竖直线上的3个小物体甲、乙、丙,分别沿这3个轨道同时从静止自由下滑,如图,物体滑到O点的先后顺序是 BA

30、.甲最先,乙稍后,丙最后 B.乙最先,然后甲和丙同时到达C.甲、乙、丙同时到达 D.乙最先,甲稍后,丙最后解析:设斜面底边长为,倾角为,则物体沿光滑斜面下滑时加速度为,物体的位移为。物体由斜面顶端由静止开始运动到底端,由运动学公式得,得, 、一定,所以当时, 2、如图9,圆柱体的仓库内有三块长度不同的滑板aO、bO、cO,其下端都固定于底部圆心O,而上端则搁在仓库侧壁,三块滑块与水平面的夹角依次为300、450、600。若有三个小孩同时从a、b、c处开始下滑(忽略阻力),则 ( ) aObcA、a处小孩最先到O点 B、b处小孩最先到O点C、c处小孩最先到O点 D、a、c处小孩同时到O点解析:三

31、块滑块虽然都从同一圆柱面上下滑,但a、b、c三点不可能在同一竖直圆周上,所以下滑时间不一定相等。设圆柱底面半径为R,则=gsint2,t2=,当=450时,t最小,当=300和600时,sin2的值相等。 例3:如图3,在设计三角形的屋顶时,为了使雨水能尽快地从屋顶流下,并认为雨水是从静止开始由屋顶无摩擦地流动。试分析和解:在屋顶宽度(2l)一定的条件下,屋顶的倾角应该多大?雨水流下的最短时间是多少?图3【解析】:方法一:如图所示,设斜面底边长为,倾角为,则雨滴沿光滑斜面下淌时加速度为,雨滴的位移为。雨滴由斜面顶端由静止开始运动到底端,由运动学公式得,得, 、一定,所以当时, 图4方法二(等时

32、圆):如图4所示,通过屋顶作垂线AC与水平线BD相垂直;并以L为半径、O为圆心画一个圆与AC、BC相切。然后,画倾角不同的屋顶、从图4可以看出:在不同倾角的屋顶中,只有是圆的弦,而其余均为圆的割线。根据“等时圆”规律,雨水沿运动的时间最短,且最短时间为而屋顶的倾角则为【例6】在竖直平面内,固定一个半径为R的大圆环,其圆心为O,在圆内与圆心O同一水平面上的P点搭一光滑斜轨道PM到大环上,如图13所示,=dR。欲使物体从P点释放后,沿轨道滑到大环的时间最短,求M点位置(用OM与水平面的夹角的三角函数表达)。OPMd图13解析:若用解析法求解,轨道长度由余弦定理求得设轨道PM与水平面夹角为,则物体沿

33、轨道下滑的加速度由正弦定理得:又 联立以上四个方程,有、a和t五个变量,可以建立起下滑时间t与OM倾角之间的函数关系,再利用数学工具求极值,但计算相当复杂。OPMdO/r图14如果改用“等时圆”作图求解,以定点P为最高点,可作出系列半径r不同(动态的)“等时圆”, 所有轨道的末端均落在对应的“等时圆”圆周上。其中,刚好与大环内切的“等时圆”半径最小,如图14所示,该“等时圆”的圆心O/满足,且在OM连线上。该圆就是由P到定圆的半径最小的“等时圆”,物体沿轨道由P滑到M点的时间也最短。几何关系有,得 则OM与水平面的夹角满足或。【例5】如图10所示,在同一竖直平面内,地面上高H的定点P,到半径为

34、R的定圆的水平距离为L,从P搭建一条光滑轨道到定圆的圆周上。现使物体从P点释放后,沿轨道下滑到定圆的时间最短,该轨道与竖直方向夹角应多大?H和L满足题设要求。PTNMQDKMH图11解析:先用解析法求解。如图11所示,延长PM与定圆相交于N,过N作水平线与PD相交于K,则物体沿光滑轨道下滑的加速度为gsin,即 ,又 ,所以 由圆的切割线定理得:=常数,所以,式中为常数,为变量。当M点的选择不同时,的值也不同,当=H时,其值最大,此时t最小。也就是轨道PM/延长线PQ与定圆相交于和地面的接触点Q,物体沿轨道下滑的时间最短,轨道PM/与竖直线的夹角满足或.图12POO/、MDQHL 再用“等时圆

35、”作图求解。以定点P为“等时圆”最高点,作出系列半径r不同(动态的)“等时圆”, 所有轨道的末端均落在对应的“等时圆”圆周上。其中,刚好与定圆O外切于M的“等时圆”半径最小,如图12所示,由P沿轨道下滑到M点的时间也最短。图中PD和OQ都垂直于地面,由几何关系可知,轨道PM的延长线必与定圆O的交于Q,求得PM与竖直线的夹角满足或。例2 两光滑斜面的高度都为h,OC、OD两斜面的总长度都为l,只是OD斜面由两部分组成,如图3所示,将甲、乙两个相同的小球从斜面的顶端同时由静止释放,不计拐角处的能量损失,问哪一个球先到达斜面底端?BDC甲乙图5AOODC甲乙图3图4tvt乙t甲VC解析 (解法1)本

36、题往往采用v-t图象求解,作出物体分别沿OC、OD斜面运动的v-t图象(如图所示4),由图象可得乙球先到达斜面底端。(解法2)构建如图5所示的等时圆,交OC于A点,交OD于B点。由“等时圆”可知,。由机械能守恒定律可知:,所以。又因为两斜面的总长度相等,所以,根据得,所以有,即乙球先到达斜面底端。图5例2:两光滑斜面的高度都为h,甲、乙两斜面的总长度都为l,只是乙斜面由两部分组成,如图5所示,将两个相同的小球从斜面的顶端同时由静止释放,不计拐角处的能量损失,问哪一个球先到达斜面底端?图6解:构想一辅助圆如图6所示:在AF上取一点O,使OA=OC,以O点为圆心,以OA为半径画圆,此圆交AD于E点。由“等时圆”可知,由机械能守恒定律可知:,所以。又因为两斜面的总长度相等,所以,根据得,所以有,即乙球先到达斜面底端。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号