《毕业设计(论文)神经网络PID控制的电厂主汽温设计.doc》由会员分享,可在线阅读,更多相关《毕业设计(论文)神经网络PID控制的电厂主汽温设计.doc(48页珍藏版)》请在三一办公上搜索。
1、目前,由于PID具有结构简单,可通过调节比例积分和微分取得基本满意的控制性能,广泛应用在电厂的各种控制过程中。电厂主汽温的被控对象是一个大惯性大迟延非线性且对象变化的系统。常规汽温控制系统为串级PID控制或导前微分控制,当机组稳定运行时,一般能将主汽温控制在允许的范围内。但当运行工况发生较大变化时,却很难保证控制品质。因此本文研究BP神经网络的PID控制,利用神经网络的自学习、非线性和不依赖模型等特性实现PID参数的在线自整定,充分利用PID和神经网络的优点。本处用一个多层前向神经网络,采用反向传播算法依据控制要求实时输出Kp、Ki、Kd,依次作为PID控制器的实时参数,代替传统PID参数靠经
2、验的人工整定和工程整定,以达到对大迟延主气温系统的良好控制。对这样一个系统在MATLAB平台上进行仿真研究,仿真结果表明基于BP神经网络的自整定PID控制具有良好的自适应能力和自学习能力,对大迟延和变对象的系统可取得良好的控制效果。关键词:主汽温,PID,BP神经网络,MATLAB仿真ABSTRACTAt present, because PID has a simple structure and can be adjusted proportional integral and differential to satisfactory control performance,,it is
3、widely used in power plants of various control process. The system of Power plant main steam temperature is an large inertia、big time-delayed and nonlinear dynamic system. Conventional steam temperature control system adopted cascade PID control or the differential control of lead before, when the u
4、nit is stable, general will allow the steam temperature control in the range ,but when operating conditions changed greatly, it is difficult to ensure the quality of control. This article studies PID control based BP neural network . Using such characteristics of neural network self-learning, nonlin
5、ear and dont rely on model realize PID parameters online auto-tuning. It can make full use of the advantages of PID and neural network. Here,we use a multilayer feedforward neural network using back propagation algorithm and based on control requirements.This net can real-time output Kp, Ki, Kd as t
6、he PID controller parameters ,insteading of the traditional PID parameters determined by experience. So it can obtain good control performance .For such a system ,we can simulate in MATLAB simulation platform.The simulation results show that the PID control based BP neural network has good adaptive
7、ability and self-learning ability.For the system of large delay and free-model can obtain good control effect.KEY WORDS: main steam temperature ,PID ,BP neural network, MATLAB simulation 目 录摘 要IABSTRACTII第一章 绪论11.1 选题背景和意义11.2 国内外研究现状11.3 立论依据51.4 本文所做的主要工作61.5 本论文的章节安排6第二章 神经网络原理和应用82.1 MP模型82.2 神经
8、网络的学习方式和学习规则92.2.1 神经网络的学习方式92.2.2 神经网络的学习规则92.3 神经网络的特点及应用112.4 BP神经网络112.4.1 BP神经网络的结构112.4.2 BP神经网络算法122.4.3 BP神经网络的前向传播算法122.4.4 BP神经网络的反向传播计算13第三章 基于BP神经网络的PID控制163.1 PID控制器的离散差分方程163.2 基于BP神经网络的PID整定原理173.3 基于BP网络的PID控制器控制的算法流程21第四章 基于BP神经网络的PID控制在主汽温控制系统中的应用234.1 锅炉主汽温的特点234.1.1 主汽温的控制任务234.1
9、.2 主汽温控制对象的动态特性234.2 主汽温的数学模型254.2.1 主汽温控制系统调节信号的选择254.2.2 减温水扰动下主汽温的数学模型254.3 主汽温控制方法274.4 主汽温基于BP神经网络的PID控制Matlab仿真284.5 仿真结果分析37结论与展望38参 考 文 献40附 录 A42致 谢46第一章 绪论 1.1 选题背景和意义在控制系统设计中,最主要而又最困难的问题是如何针对复杂、变化及具有不确定性的受控对象和环境作出有效的控制决策。经典控制理论和现代控制理论的基础是建立数学模型,以此进行控制系统设计,然而面对工程实际问题和工程应用对控制要求的不断提高,基于数学模型的
10、控制理论和方法的局限性日益明显。无模型控制能有效提高控制系统的适应性和鲁棒性,因此,走向无模型控制是自动控制发展的另一个重要方向。在1943年,麦卡洛克和皮茨首次提出了脑模型,其最初动机在于模仿生物的神经系统。随着超大规模集成电路(VLSl)、光电子学和计算机技术的发展,人工神经网络(ANN)己引起更为广泛的注意。近年来,基于神经元控制的理论和机理已获得进一步的开发和应用。尽管基于神经元的控制能力还比较有限,但由于神经网络控制器具有学习能力和记忆能力、概括能力、并行处理能力、容错能力等重要特性,仍然有许多基于ANN的控制器被设计出来,这类控制器具有并行处理、执行速度快、鲁棒性好、自适应性强和适
11、于应用等优点,广泛的应用在控制领域1。神经网络控制是一种基本上不依赖于模型的控制方法,它比较适用于那些具有不确定性或高度非线性的控制对象,并具有较强的适应和学习功能,它是智能控制的一个重要分支。对于自动控制来说,神经网络有具有自适应功能,泛化功能,非线性映射功,高度并行处理功能等几方面优势2,这使得神经网络成为当今一个非常热门的交叉学科, 广泛应用在电力,化工,机械等各行各业,并取得了比较好的控制效果。1.2 国内外研究现状随着现代工业过程的日益复杂,经典现代控制理论面临严峻挑战,例如被控系统越来越巨大,存在多种不确定因素,存在难以确定描述的非线性特性,而控制的要求越来越高(如控制精度、稳定性
12、、容错、实时性等),因此人们一直在探索如何使控制系统具有更高的智能,使之能够适应各种控制环境。而神经网络源于对人脑神经功能的模拟,它的某些类似人的智能特性有可能被用于解决现代控制面临的一些难题。因此,从20世纪60年代起,人们就开始研究神经网络在控制中的应用了,取得了一定效果。目前,随着神经理论的发展和新算法的相继提出,神经网络的应用越来越广泛。从神经网络的基本模式看,主要有:前馈型、反馈型、自组织型及随机型神经网络3。这四种类型各自具有不同的网络模型:前馈网络中主要有Adaline、BP网络及RBF网络;反馈网络主要有Hopfield网络;自组织网络主要有ART网,当前,已经比较成熟的神经网
13、络控制模型主要有神经自校正控制,神经PID控制,神经模型参考自适应控制,神经内膜控制等等4(1) 、神经网络自校正控制神经自校正控制结构如图,它由两个回路组成:(1)自校正控制器与被控对象构成的反馈回路;(2)神经网络辨识器与控制器设计,以得到控制器的参数。这种方案的设计思想是利用神经网络辨识器的计算估计能力对常规控制器参数进行约束优化求解,从而实现对常规控制器的参数或结构进行调整。方框图如下5:图1-1 神经自校正控制结构图可见,辨识器与自校正控制器的在线设计是自校正控制实现的关键。(2)、神经网络PID控制。PID控制要取得好的控制效果,就必须通过调整好比例、积分和微分三种控制作用在形成控
14、制量中相互配合又相互制约的关系,这种关系不一定是简单的“线性组合”,从变化无穷的非线性组合中可以找出最佳的关系。神经网络所具有的任意非线性表示能力,可以通过对系统性能的学习来实现具有最佳组合的PID控制。方框图如下6:图1-2 神经PID控制结构图对于一般神经PID常采用BP算法,因BP神经网络具有逼近任意非线性函数的能力,而且结构和学习算法简单明确。通过神经网络的自身学习、加权系数调整,从而使其稳定状态对应于某种最优控制律下的PID控制器参数。(3) 、神经网络模型参考自适应控制神经网络模型参考自适应控制 ,将神经网络同模型参考自适应控制相结合,就构成了神经网络模型参考自适应控制,其系统的结
15、构形式和线性系统的模型参考自适应控制系统是相同的,只是通过神经网络给出被控对象的辨识模型。根据结构的不同可分为直接与间接神经网络模型参考自适应控制两种类型,分别如图中(a)和(b)所示。间接方式比直接方式中多采用一个神经网络辨识器,其余部分完全相同7。图1-3 神经模型参考自适应控制结构图NN控制器的权重修正目标是使过程输出最后以零误差跟踪参数模型输出。对于直接方式,由于未知的非线性对象处于误差和NN控制器的中间位置,给参数修正造成困难。为了避免这一问题,增加NN辨识器,变为间接方式(4)、神经网络内模控制神经网络内模控制系统如下图所示。NNC称为神经网络控制器,NNI称为神经网络状态估计器。
16、图中的神经网络状态估计器NNI用于充分逼近被控对象的动态模型,相当于正向模型。神经网络控制器NNC不是直接学习被控对象的逆模型,而是间接地学习被控对象的逆动态特性,这样就回避了要估计y(K十1)对u(k)求偏导而造成的困难。图1-4 神经内膜控制结构图在神经网络内模控制系统中,NNI状态估计器作为被控对象的近似模型与实际对象并行设置,它们的差值用于反馈,同期望的给定值之差经一线性滤波器处理后,送给NNC神经网络控制器,经过多次训练,它将间接地学习对象的逆动态特性。此时,系统误差将趋于零8。 (5)、神经网络预测控制由于神经网络可以精确描述非线性动态过程,因此,可用神经网络设计预测控制系统。预测
17、控制是近年来发展起来的一类新型计算机控制算法,它利用内部模型预测被控对象未来输出及其与给定值之差,然后据此以某种优化指标计算当前应加于被控对象的控制量,以期使未来的输出尽可能地跟踪给定参考轨线。下面是神经网络预测控制系统的一般方框图9。图1-5 神经预测控制结构图这种算法的基本特征是建立预测模型方便,采用滚动优化策略和采用模型误差反馈校正,预测模型根据系统的历史信息和选定的未来输入,预测系统未来的输出。 根据预测模型的输出,控制系统采用基于优化的控制策略对被控对象进行控制。(6) 、其他先进的神经控制模糊神经网络控制:模糊系统是以模糊集合论、模糊语言变量及模糊逻辑推理的知识为基础,力图在一个较
18、高的层次上对人脑思维的模糊方式进行工程化的模拟。而神经网络则是建立在对人脑结构和功能的模拟与简化的基础上。由于人脑思维的容错能力源于思维方法上的模糊性以及大脑本身的结构特点,因此将两者综合运用便成为自动控制领域的一种自然趋势。模糊系统与神经网络主要采用以下综合方式,既将人工神经网络作为模糊系统中的隶属函数、模糊规则的描述形式10。多层神经网络控制:一个普通的多层神经控制系统如下图所示,基本上是一种前馈控制器。该系统存在两个控制作用:前馈控制和常规反馈控制。前馈控制由神经网络实现,训练目标是使期望输出与受控对象实际输出间的偏差为最小。该误差作为反馈控制器的输入。反馈作用与前馈作用被分别考虑11。
19、图1-6 多层神经网络控制结构图1.3 立论依据BP算法就是在模拟生物神经元的基础上建立起来的在人工神经网络上的一种搜索和优化算法。对于人工神经网络,网络的信息处理是由神经元间的相互作用来实现,知识与信息的存贮表现为网络元件互相联结分布的物理联系,网络的学习和训练决定于各神经元连接权系数的动态调整过程。ANN作为一种新型的信息描述和处理方式,广泛应用在控制领域,其在控制领域的吸引力主要表现在以下几方面:(l)能够充分逼近任意复杂的非线性关系;(2)能够学习与适应严重不确定性系统的动态特性;(3)所有定量或定性的信息都分布存贮于网络的权中,故ANN有很强的鲁棒性和容错性;(4)采用并行分布处理的
20、方法,使得快速进行大量运算成为可能。这些特点都表明神经网络在解决高度非线性和严重不确定性系统的控制上有巨大的潜力。而电厂主汽温是典型的具有大迟延、大惯性、非线性及时变性的控制系统,大量的文献资料表明,用神经网络对主汽温进行控制是可行且有效的。而PID控制是最早发展起来的控制策略之一,历史悠久,理论完善,由于其算法简单、鲁棒性好和可靠性高,被广泛应用于工业控制过程,尤其适用于可建立精确数学模型的确定性控制系统。而实际工业生产过程中往往具有非线性,时变不确定性,如火电厂的锅炉主汽温对象,因而难以建立精确的数学模型,应用常规PID控制器不能达到到理想的控制效果,在实际生产过程中,由于受到参数整定方法
21、繁杂的困扰,常规PID控制器参数往往整定不良,性能欠佳,对运行工况的适应性很差1。因此常规PID控制的应用受到很大的限制和挑战。那么是否可以把神经网络和PID结合在一起,充分利用两者的优点呢,使新算法既有神经网络的学习能力又有PID控制的简单性呢?。基于以上种种因素,本文采用神经网络,选取应用最广泛的BP算法,与传统PID控制结合的控制策略来实现对主汽温的有效控制,可以说这是采用多策略的智能控制与PID结合实现主汽温控制的又一次有益的尝试与探索。1.4 本文所做的主要工作首先,本文对神经网络的模型,结构,学习方式和学习算法作了介绍,并阐述了了BP神经网络的结构,算法. 接着结合BP神经网络和P
22、ID控制的原理,对二者进行了结合,采用了基于神经网络的自整定PID 控制,即把神经网络的输出当做PID的三个参数,在一定的准则函数下,不断自动调整这三个参数,直到满足一定的性能指标。紧接着,在主汽温系统上进行仿真分析,锅炉主汽温对象是一个时变的对象,在不同的负荷下有不同的动态特性,因此对其不同的负荷均进行仿真分析。本文采用三层BP神经网络,经典增量式数字PID的控制算法,只要主汽温系统的输入输出之差不为0,就不断调整神经网络的权值,进而调整PID的参数。仿真结果表明:对于不同的要求不同的改进程序会有更好更稳定的仿真结果相比较常规PID。1.5 本论文的章节安排第一章、绪论简单论述了选题的意义和
23、重要性以及主汽温控制的研究现状,并阐述了论文的理论依据,说明了本论文所采用算法的可行性和必要性。最后介绍了本文所作的主要工作和文章的结构安排。第二章、神经网络的基本理论本章介绍了神经网络的基础知识,重点对BP神经网络的原理和结构进行了阐述。第三章、基于BP神经网络的自整定PID控制原理本章论述了基于BP神经网络的PID自整定控制的基本原理,为以后仿真分析打下基础。第四章、基于BP神经网络在主汽温控制系统中的应用本章首先对主汽温的动态特性进行分析,对常见的和改进的主汽温控制策略进行了进行了简单描述和总结,重点对主汽温进行仿真分析。最后是结论与展望本部分总结了本论文的成果和不足,提出以后应该注意和
24、改进的地方,为以后的研究指明方向。第二章 神经网络原理和应用人工神经网络(ANN,ArtifieialNeuralNetworks)是对人脑神经系统的模拟而建立起来的。它是由简单信息处理单元(人工神经元,简称神经元)互联组成的网络,能够接受并处理信息。网络的信息处理是由处理单元之间的相互作用(连接权)来实现的。多年来,学者们己经建立了多种神经网络模型,其中决定它们整体性能的因素主要是:神经元(信息处理单元)的特性,神经元之间相互连接的形式,为适应环境而改善性能的学习规则等三个要素。2.1 MP模型MP模型是1943年由MeCulloch和Pitts共同提出的第一个神经网络模型,如图2.1所示,
25、它是一个多输入、多输出的非线性信息处理单元。 图2-1 MP神经元模型结构其中,:神经元i的输出,它可以与其他多个神经元通过权连接。 :神经元的输入。 :神经元的连接权值。 :神经元的阈值。 :神经元的非线性映射函数。 该神经元的输出,可用下式描述: (2-1)设 (2-2)则 (2-3)根据激发函数的不同,人们把人工神经元分成以下几种类型:1.分段线性激发函数 (2-4)2.sigmoid激发函数 (2-5)3双曲正切函数 (2-6)4高斯激发函数 (2-7)2.2 神经网络的学习方式和学习规则2.2.1 神经网络的学习方式学习是神经网络的主要特征之一。学习规则就是修正神经元之间连接强度或加
26、权系数的算法,使获得的知识结构适应周围环境的变化。在学习过程中,执行学习规则,修正加权系数。神经网络的学习方法主要分为有导师(指导式)学习、无导师(自学式)学习和再励学习(强化学习)三种: (l)有导师学习:就是在学习的过程中,有一个期望的网络输出,学习算法根据给定输入的神经网络实际输出与期望输出之间的误差来调整神经元的连接强度,即权值。因此学习需要有导师来提供期望输出信号。(2)无导师学习:就是在学习过程中不需要有期望输出,因而不存在直接的误差信息。网络学习需要建立一个间接的评价函数,每个处理单元能够自适应连接权值,以对网络的某种行为趋向作出评价。(3)再励学习:这种学习介于上述两种情况之间
27、,外部环境对系统输出结果只给出评价(奖或罚)而不是给出正确答案,学习系统经过强化那些受奖励的行为来改善自身性能。2.2.2 神经网络的学习规则神经网络通常采用的网络学习规则包括以下三种:(l)误差纠正学习规则令是输入时神经元k在n时刻的实际输出,表示应有的输出(可由训练样本给出),则误差信号可写为: (2-8)误差纠正学习的最终目的是使某一基于的目标函数达到要求,以使网络中每一输出单元的实际输出在某种统计意义上逼近应有输出。一旦选定了目标函数形式,误差纠正学习就变成了一个典型的最优化问题,最常用的目标函数是均方误差判据,定义为误差平方和的均值: (2-9)其中E为期望算子。上式的前提是被学习的
28、过程是平稳的,具体方法可用最优梯度下降法。直接用J作为目标函数时需要知道整个过程的统计特性,为解决这一问题,通常用J在时刻n的瞬时值代替J,即: (2-10)问题变为求E对权值w的极小值,据梯度下降法可得: (2-11)其中a为学习步长,这就是通常所说的误差纠正学习规则或称delta学习规则。(2)Hebb学习规则由神经心理学家Hbeb提出的学习规则可归纳为“当某一突触连接两端的神经元同时处于激活状态(或同为抑制)时,该连接的强度应增加,反之应减弱”用数学方式可描述为: (2-12)由于与的相关成比例,有时称为相关学习规则。(3)竞争学习规则顾名思义,在竞争学习时,网络各输出单元互相竞争,最后
29、达到只有一个最强者激活,最常见的一种情况是输出神经元之间有侧向抑制性连接,这样原来输出单元中如有某一单元较强,则它将获胜并抑制其它单元,最后只有此强者处于激活状态。最常用的竞争学习规则可写为: (2-13)2.3 神经网络的特点及应用神经网络具有以下特点:1、分布式存贮信息神经网络使用大量的神经元之间的连接及对各连接权值的分布来表示特定的信息,从而使网络在局部网络受损或输入信号因各种原因发生部分畸变时,仍能够保证网络的正确输出,提高网络的容错性和鲁棒性。2、并行协同处理信息神经网络中的每个神经元都可以根据接收到的信息进行独立的运算和处理,并输出结果,同一层中的各个神经元的输出结果可被同时计算出
30、来,然后传输给下一层做进一步处理,这体现了神经网络并行计算的特点,这一特点使网络具有非常强大的实时性。3、信息处理与存储和二为一神经网络的每个神经元都兼有信息处理和存储功能,神经元之间连接强度的变化,既反映了对信息的记忆,同时又和神经元对激励的响应一起反映了对信息的处理。4、对信息的处理具有自组织、自学习的特点,便于联想、综合和推广神经网络的神经元之间的连接强度用权值大小来表示,这种权值可以通过对训练的学习而不断变化,而且随着训练样本量的增加和反复学习,这些神经元之间的连接强度会不断增加,从而提高神经元对样本特征的反映灵敏度。正是因为神经网络具有的这些特点,才使它在模式识别、人工智能、控制工程
31、、信号处理等领域有着广泛的应用,相信随着人工神经网络研究的进一步深入,其应用领域会更广,用途会更大。2.4 BP神经网络20世纪80年代中期,以Rumelhart和McClelland为首,提出了多层前馈网络(MFNN)的反向传播(BP,back Propagation)的学习算法,简称BP算法。2.4.1 BP神经网络的结构BP网络结构如下图: 图2-2 BP网络结构图x,o为网络的输入和输出,每个神经元用一个节点表示,网络包含一个输出层和一个输入层,隐含层可以是一层也可以是多层。图中j表示输入层神经元数,i表示隐层神经元数,k表示输出层神经元数。已经证明BP网络能逼近任意非线性函数,在各个
32、领域中有广泛的应用。BP网络中采用梯度下降法,即在网络学习过程中,使网络的输出与期望输出的误差边向后传播边修正连接权值,以使其误差均方值最小。学习算法有正向传播和反向传播组成,在正向传播中,输入信号从输入层经过隐层传向输出层,若输出层得到期望的输出,学习结束,否则,转至反向传播。反向传播算法是将误差信号按照原链接路反向计算由梯度下降法调整各层神经元的权值和阈值,使误差信号最小。这两部分是相继连续反复进行的,直到误差满足要求。2.4.2 BP神经网络算法 BP神经网络学习流程可分为(1)设置初始权系值。(2)给定网络的输入输出样本对,计算网络输出。(3)计算目标函数,(4)判断目标函数是否满足要
33、求。(5)如不满足要求则进行反向传播计算,直到误差满足要求。2.4.3 BP神经网络的前向传播算法设某BP神经网络具有m个输入、q个隐含节点、r个输出的三层结构,则BP神经网络的输入为: j=1,2.m (2-14)输入层节点的的输出为 : j=1,2.m (2-15)隐含层第i个神经元的输入: i=1,2.q (2-16)输出可表达为 : i=1,2.q (2-17)其中为输入层到隐层加权系数;上标(1)、(2)、(3)分别代表输入层、隐含层、输出层,为活化函数,这里取为Sigmoid活化函数8。 (2-18)输出层的第个神经元的总输入为: k=1,2.r (2-19)输出层的第k个神经元的
34、总输出为 k=1,2 (2-20)式中,:为隐层到输出层加权系数,为输出活化函数。 以上工作在神经网络工作时,就可以完成了一次前向传播的计算。 2.4.4 BP神经网络的反向传播计算假设,神经网络的理想输出为,在前向计算中,若实际输出与理想输出不一致,就要将其误差信号从输出端反向传播回来,并在传播过程中对加权系数不断修正,使输出层神经元上得到所需要的期望输出为止。为了对加权系数进行调整,选取目标函数为: (2-21)以误差函数E减少最快方向调整,即使加权系数按误差函数E的负梯度方向调整,使网络逐渐收敛。按照梯度下降法,可得到神经元j到神经元i的t+1次权系数调整值: (2-22)由式(2-21
35、)可知,需要变换出E相对于该式中网络此刻实际输出关系,因此 (2-23)而其中的 (2-24)其中的表示节点i的第j个输入。所以 (2-25)将(2-23)代入式(2-24),可以得到: (2-26)令 (2-27)式中为第i个节点的状态对E的灵敏度。由式(2-24)和式(2-25)可以得到: (2-28) 以下分两种情况计算: 若i为输出层节点,即i =k由式(2-21)和(2-27)可得 (2-29)所以可得: (2-30)此时应该按照下列公式进行调整: (2-31) 式中为学习速率。 若i不为输出层神经元,即此时式(2-27)为 (2-32) 其中 (2-33)式中是节点i后边一层的第个
36、节点,是节点的第j个输入。 (2-34) 当i=j时,将式(2-32)和(2-34)代入(2-23),有 (2-35)此时的权值调整公式为: (2-36)第三章 基于BP神经网络的PID控制一般来说,基于神经网络的PID控制器的典型结构主要有两种,一种是基于神经网络的整定PID控制,即把神经网络的输出作为PID控制器的比例,积分和微分。另一种是把神经网络的权值做为比例,积分和微分。本章将详细介绍基于BP神经网络的整定PID控制算法,然后对过热汽温系统的进行设计,对其进行Matlab算法仿真。3.1 PID控制器的离散差分方程在连续信号系统中,PID控制算式的表达式 (3-1)式中,比例系数,积
37、分时间常数,微分时间常数。写成传递函数形式 (3-2)当采样周期较小时, 可以用求和代替积分,用差商代替微分,即做如下近似变换来离散化: (3-3) 式中,k为采样序号,k=1,2,T为采样周期。由上式可得离散的PID表达式为: (3-4)此式称为PID的位置算式。位置算式使用不方便,累加偏差不仅要占大量的内存空间,而且也不便编写程序。最好能转换成某种递推的形式。为此提出了增量式。所谓增量式PID是指数字控制器输出u (k)只是控制量的增量,当执行机构需要的是控制量的增量时,应采用增量式PID控制。根据递推原理可得 (3-5) 用式(3-4)减式(3-5),可得增量式PID控制算法 (3-6)
38、 式(3-6)进一步可改写为: (3-7)式中,用增量式PID控制算法有以下优点:1增量算法不需要累加,控制量增量的确定仅与最近几次误差采样值有关,存在计算误差与精度不足时,对控制量计算影响较小。2增量式算法得出的是控制量的增量,误动作影响小。3便于编程序实现 3.2 基于BP神经网络的PID整定原理PID控制要取得好的控制效果,就必须通过调整好比例、积分和微分三种控制作用在形成控制量中相互配合又相互制约的关系,这种关系不一定是简单的“线性组合”,而是从变化无穷的非线性组合中找出最佳的关系。神经网络具有逼近任意非线性函数的能力,而且结构和学习算法简单明确。可以通过对系统性能的学习来实现具有最佳
39、组合的PID控制。采用BP神经网络,可以建立参数、自学习PID控制。基于BP(Back Propagation)神经网络的PID控制结构如图3-1所示。控制器由两部分组成:1、经典的PID控制器:直接对被控对象进行闭环控制,并且在线调整三个参数、2、神经网络:根据系统的运行状态,调节PID控制器的参数,以其达到某种性能指标的最优化,即使输出层神经元的输出状态对应于PID控制器的三个可调参数、,通过神经网络的自身学习、加权系数调整,从而使其稳定状态对应于某种最优控制规律下的PID的控制器参数。基于BP神经网络自整定PID控制系统方框图如图3-2所示。 图3-1 BP神经网络结构图 图3-2 基于
40、BP神经网络自整定PID控制系统原理图经典增量式数字PID的控制算式为: (3-4) 式中、分别为比例、积分、微分系数。将、视为依赖于系统运行状态的可调系数时,可将(3-4)描述为: (3-5)式中,是与、u(k-1)、y(k)等有关的非线性函数,可以用BP神经网络通过训练和学习找到这样一个最佳控制规律。设BP神经网络NN是一个采用三层BP结构,其结构如图3-1所示,它有m个输入节点,q个隐含节点,3个输出节点。输入节点对应所选的系统运行状态量,如系统不同时刻的输入量和输出量,偏差量等。输出节点分别对应PID控制器的三个参数、,由于、不能为负,所以输出层神经元活化函数取非负的Sigmoid函数。由图可见,BP神经网络的输入层输出为 =1,2 (3-6)隐层输入为: (3-7)隐层输出为: =1,2 (3-8) 式中,为输入层到隐含层加权系数,上标(1)、(2)、(3)分别代表输入层、隐含层、输出层,f(x)为正负对称的Sigmoid函数,即。最后网络输出层三个节点的输入为 (3-9