中考数学三角函数在实际中的应用(九年级下期复习用带答案)汇总.doc

上传人:牧羊曲112 文档编号:3986296 上传时间:2023-03-30 格式:DOC 页数:14 大小:241KB
返回 下载 相关 举报
中考数学三角函数在实际中的应用(九年级下期复习用带答案)汇总.doc_第1页
第1页 / 共14页
中考数学三角函数在实际中的应用(九年级下期复习用带答案)汇总.doc_第2页
第2页 / 共14页
中考数学三角函数在实际中的应用(九年级下期复习用带答案)汇总.doc_第3页
第3页 / 共14页
中考数学三角函数在实际中的应用(九年级下期复习用带答案)汇总.doc_第4页
第4页 / 共14页
中考数学三角函数在实际中的应用(九年级下期复习用带答案)汇总.doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《中考数学三角函数在实际中的应用(九年级下期复习用带答案)汇总.doc》由会员分享,可在线阅读,更多相关《中考数学三角函数在实际中的应用(九年级下期复习用带答案)汇总.doc(14页珍藏版)》请在三一办公上搜索。

1、专题3 三角函数在实际中的应用自我诊断1.某数学兴趣小组在活动课上测量学校旗杆的高度已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45两人相距5米且位于旗杆同侧(点B、D、F在同一直线上)(1)求小敏到旗杆的距离DF(结果保留根号)(2)求旗杆EF的高度(结果保留整数,参考数据:1.4,1.7)自我诊断2.如图所示,某古代文物被探明埋于地下的A处,由于点A上方有一些管道,考古人员不能垂直向下挖掘,他们被允许从B处或C处挖掘,从B处挖掘时,最短路线BA与地面所成的锐角是56,从C处挖掘时,最短

2、路线CA与地面所成的锐角是30,且BC=20m,若考古人员最终从B处挖掘,求挖掘的最短距离(参考数据:sin56=0.83,tan561.48,1.73,结果保留整数)跟踪训练11.年 4 月 20 日,四川雅安发生里氏 7.0 级地震,救援队救援时,利用生命探测仪在某建筑物 废墟下方探测到点 C 处有生命迹象,已知废墟一侧地面上两探测点 A、B 相距 4 米,探测线与地面的夹角分别为 30和 60,如图所示,试确定生命所在点 C 的深度(结果精确到 0.1 米,参考数据1.41, 1.73)2.一电线杆PQ立在山坡上,从地面的点A看,测得杆顶端点A的仰角为45,向前走6m到达点B,又测得杆顶

3、端点P和杆底端点Q的仰角分别为60和30,(1)求BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m)3.如图,为了开发利用海洋资源,某勘测飞机测量一岛屿两端A、B的距离,飞机以距海平面垂直同一高度飞行,在点C处测得端点A的俯角为60,然后沿着平行于AB的方向水平飞行了500米,在点D测得端点B的俯角为45,已知岛屿两端A、B的距离541.91米,求飞机飞行的高度(结果精确到1米,参考数据:1.73,1.41)4如图,某建筑物BC顶部有釕一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47,观测旗杆底部B的仰角为42已知点D到地面的距离DE为1.56m,EC=2

4、1m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位)参考数据:tan471.07,tan420.905如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30,在A、C之间选择一点B(A、B、C三点在同一直线上)用测角仪测得塔顶D的仰角为75,且AB间的距离为40m(1)求点B到AD的距离;(2)求塔高CD(结果用根号表示)6如图,一楼房AB后有一假山,其斜坡CD坡比为1:,山坡坡面上点E处有一休息亭,测得假山坡脚C与楼房水平距离BC=6米,与亭子距离CE=20米,小丽从楼房顶测得点E的俯角为45(1)求点E距水平面BC的高度;(2)求楼房AB的高(结果

5、精确到0.1米,参考数据1.414,1.732)7如图是某货站传送货物的平面示意图为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45改为30 已知原传送带AB长为4米(1)求新传送带AC的长度(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点5米的货物MNQP是否需要挪走,并说明理由参考数据:8如图,小岛在港口P的北偏西60方向,距港口56海里的A处,货船从港口P出发,沿北偏东45方向匀速驶离港口P,4小时后货船在小岛的正东方向求货船的航行速度(精确到0.1海里/时,参考数据:1.41,1.73)自我诊断答案考点:解直角三角形的应用-仰角俯角问题分析:(1)过

6、点A作AMEF于点M,过点C作CNEF于点N设CN=x,分别表示出EM、AM的长度,然后在RtAEM中,根据tanEAM=,代入求解即可;(2)根据(1)求得的结果,可得EF=DF+CD,代入求解解:(1)过点A作AMEF于点M,过点C作CNEF于点N,设CN=x,在RtECN中,ECN=45,EN=CN=x,EM=x+0.71.7=x1,BD=5,AM=BF=5+x,在RtAEM中,EAM=30=,x1=(x+5),解得:x=4+3,即DF=(4+3)(米);(2)由(1)得:EF=x+0.7=4+0.74+31.7+0.79.810(米)答:旗杆的高度约为10米点评:本题考查了解直角三角形

7、的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数的知识求解考点:解直角三角形的应用分析:作ADBC交CB延长线于点D,线段AD即为文物在地面下的深度设AD=x通过解直角ABD求得BD=;通过解直角ACD求得CD=x,由此列出关于x的方程,通过方程求得AD的长度最后通过解直角三角形ABD来求AB的长度即可解:作ADBC交CB延长线于点D,线段AD即为文物在地面下的深度根据题意得CAD=30,ABD=56设AD=x在直角ABD中,ABD=56,BD=在直角ACD中,ACB=30,CD=AD=x,x=+20解得x18.97,AB=23答:从B处挖掘的最短距离为23米点评:此题考查了解直角

8、三角形的应用,主要是正切、余弦概念及运算,关键把实际问题转化为数学问题加以计算跟踪训练答案1考点:解直角三角形的应用分析:过点 C 作 CDAB 交 AB 于点 D,则CAD=30,CBD=60,在 RtBDC 中,CD=BD, 在 RtADC 中,AD=CD,然后根据 AB=ADBD=4,即可得到 CD 的方程,解方程即可解:如图,过点 C 作 CDAB 交 AB 于点 D探测线与地面的夹角为 30和 60,CAD=30,CBD=60,在 RtBDC 中,tan60=,BD= = ,在 RtADC 中,tan30=,AD= = ,AB=ADBD=4,CD=2 3.5(米)答:生命所在点 C

9、的深度大约为 3.5 米点评:本题考查了解直角三角形的应用,难度适中,解答本题的关键是构造直角三角形,解直角 三角形,也考查了把实际问题转化为数学问题的能力2.考点:解直角三角形的应用-仰角俯角问题分析:(1)作PQAB交AB的延长线于H,根据三角形的外角的性质计算;(2)设PQ=xm,根据正、余弦的定义表示出QH、BH,根据等腰直角三角形的性质列式计算即可解:(1)作PQAB交AB的延长线于H,由题意得,QBH=30,PBH=60,BQH=60,PBQ=30,BPQ=BQHPBQ=30;(2)设PQ=xm,BPQ=PBQ,BQ=PQ=xm,QBH=30,QH=BQ=x,BH=x,A=45,6

10、+x=xx,解得x=2+69答:该电线杆PQ的高度约为9m点评:本题考查的是解直角三角形的应用仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键3.考点:解直角三角形的应用-仰角俯角问题分析:过点A作AECD于点E,过点B作BFCD于点F,设高度为x米,在RtAEC中可得CE=,在RtBFD中有DF=x,根据AB=EF=CD+DFCE列出方程,解方程可求得x的值解:过点A作AECD于点E,过点B作BFCD于点F,设高度为x米ABCD,AEF=EFB=ABF=90,四边形ABFE为矩形 AB=EF,AE=BF由题意可知:AE=BF=x米,CD=500米在RtAEC中,C=60,

11、CE=(米) 在RtBFD中,BDF=45,DF=x(米) AB=EF=CD+DFCE,即500+xx=541.91解得:x=99答:飞机行飞行的高度是99米点评:此题考查了俯角的定义、解直角三角形与矩形的性质注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用4.考点:解直角三角形的应用-仰角俯角问题分析:根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度解:根据题意得DE=1.56,EC=21,ACE=90,DEC=90过点D作DFAC于点F则DFC=90ADF=47,BDF=42四边形DECF是矩形DF=EC=21,F

12、C=DE=1.56,在直角DFA中,tanADF=,AF=DFtan47211.07=22.47(m)在直角DFB中,tanBDF=,BF=DFtan42210.90=18.90(m),则AB=AFBF=22.4718.90=3.573.6(m)BC=BF+FC=18.90+1.56=20.4620.5(m)答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米点评:此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解5.考点:解直角三角形的应用-仰角俯角问题分析:(1)过点B作BEAD于点E,然后根据AB=40m

13、,A=30,可求得点B到AD的距离;(2)先求出EBD的度数,然后求出AD的长度,然后根据A=30即可求出CD的高度解:(1)过点B作BEAD于点E,AB=40m,A=30,BE=AB=20m,AE=20m,即点B到AD的距离为20m;(2)在RtABE中,A=30,ABE=60,DBC=75,EBD=1806075=45,DE=EB=20m,则AD=AE+EB=20+20=20(+1)(m),在RtADC中,A=30,DC=(10+10)m答:塔高CD为(10+10)m点评:本题考查了解直角三角形的应用,难度适中,解答本题的关键是根据仰角构造直角三角形并解直角三角形6.考点:解直角三角形的应

14、用-仰角俯角问题分析:(1)过点E作EFBC于点F在RtCEF中,求出CF=EF,然后根据勾股定理解答;(2)过点E作EHAB于点H在RtAHE中,HAE=45,结合(1)中结论得到CF的值,再根据AB=AH+BH,求出AB的值解:(1)过点E作EFBC于点F在RtCEF中,CE=20,EF2+(EF)2=202,EF0,EF=10答:点E距水平面BC的高度为10米(2)过点E作EHAB于点H则HE=BF,BH=EF在RtAHE中,HAE=45,AH=HE,由(1)得CF=EF=10(米)又BC=6米,HE=6+10米,AB=AH+BH=6+10+10=16+1033.3(米)答:楼房AB的高

15、约是33.3米7.考点:解直角三角形的应用-坡度坡角问题分析:(1)在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在RtACD中,求出AC的长(2)通过解直角三角形,可求出BD、CD的长,进而可求出BC、PC的长然后判断PC的值是否大于2米即可解:(1)如图,在RtABD中,AD=ABsin45=4=4 在RtACD中,ACD=30 AC=2AD=8 即新传送带AC的长度约为8米;(2)结论:货物MNQP不用挪走 解:在RtABD中,BD=ABcos45=4=4 在RtACD中,CD=ACcos30=2CB=CDBD=240.9PC=PBCB40.9=3.12,货物MNQP不应

16、挪走点评:考查了坡度坡脚问题,应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形在两个直角三角形有公共直角边时,先求出公共边的长是解答此类题的基本思路8.考点:解直角三角形的应用-方向角问题分析:由已知可得ABPQ,QAP=60,A=30,AP=56海里,要求货船的航行速度,即是求PB的长,可先在直角三角形APQ中利用三角函数求出PQ,然后利用三角函数求出PB即可解:设货船速度为x海里/时, 4小时后货船在点B处,作PQAB于点Q由题意AP=56海里,PB=4x海里,在直角三角形APQ中,APQ=60,所以PQ=28在直角三角形PQB中,BPQ=45,所以,PQ=PBcos45=2x所以,2x=28,解得:x=79.9答:货船的航行速度约为9.9海里/时

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号