《二元一次方程组的12种应用题型归纳.doc》由会员分享,可在线阅读,更多相关《二元一次方程组的12种应用题型归纳.doc(8页珍藏版)》请在三一办公上搜索。
1、二元一次方程组的12种应用题型归纳类型一:行程问题【例1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲的速度为x千米/时,乙的速度为y千米/时。 解得答:甲的速度为6千米/时,乙的速度为3.6千米/时。【例2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求这艘船在静水中的速度和水流速度。解:设这艘船在静水中的速度为x千米/时,水流速度为y千米/时。 解得 答:这艘船在静水中的速度为17千米/时,水流速度为3千米/时。类型二:工程问题【
2、例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成,需工钱5.2万元; 若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。解:设甲公司每周的工作效率为x,乙公司每周的工作效率为y。 解得1=10(周) 1=15(周)甲公司单独完成这项工程需10周,乙公司单独完成这项工程需15周。设甲公司每周的工钱为a万元,乙公司每周的工钱为b万元。 解得此时10a=6(万元) 15b=4(万元) 64答:从节约开支的角度考虑,小明家应选择乙公司。类型三:商品销售利润问题【例1】李大叔去年
3、承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜 每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年种植甲、乙蔬菜各多少亩?解:设李大叔去年种植甲蔬菜x亩,乙蔬菜y亩。 解得答:李大叔去年种植甲蔬菜x亩,乙蔬菜y亩。【例2】某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表,求该商场购进A、B两种商品各多少件。AB进价(元/件)12001000售价(元/件)13801200注:获利 = 售价 - 进价解:设该商场购进A商品x件,B商品y件。 解得答:该商场购进A商品200件,B商品120件。类型四:银行储蓄问题【例】小敏的爸爸为了给她筹备上高
4、中的费用,在银行同时用两种方式共存了4000元钱。 第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%。三年后同时取出共得利息303.75元(不计利息税),求小敏的爸爸两种存款方式各存入了多少元。解:设第一种方式存款x元,第二种方式存款y元。 解得答:第一种方式存款1500元,第二种方式存款2500元。类型五:生产中的配套问题【例1】现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整的盒子? 解:设用
5、x张铁皮做盒身,y张铁皮做盒底,则有盒身8x个,盒底22y个。 解得答:用100张铁皮制盒身,80张铁皮制盒底,可以正好制成一批完整的盒子。【例2】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?解: 设分配x人生产螺栓,y人生产螺母。 解得答:应分配25人生产螺栓,35人生产螺母,才能使生产出的螺栓和螺母刚好配套。【例3】一张方桌由1个桌面、4条桌腿组成,1立方米木料可以做50个桌面或300条桌 腿。现有5立方米的木料,那么用多少立方米木料做桌面,多少立方米木料做桌腿,做出
6、的桌面和桌腿恰好配成方桌?能配多少张方桌?解:设用x立方米木料做桌面,y立方米木料做桌腿。 解得350=150(张)答:用3立方米木料做桌面,2立方米木料做桌腿,做出的桌面和桌腿恰好配成方桌,能配150张方桌。类型六:增长率问题【例】某市现有人口42万,估计一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,求该市现在的城镇人口数与农村人口数。解:设该城市现在的城镇人口数是x万人,农村人口数是y万人。 解得答:该市现在的城镇人口数是14万人,农村人口数是28万人。类型七:和差倍分问题【例】游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。如果每个男孩看到 蓝色与红色
7、的游泳帽一样多,而每个女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?解:设男孩有x人,女孩有y人。 解得 答:男孩有4人,女孩有3人。 类型八:数字问题【例1】一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位 数字之和,商是5,余数是1,这个两位数是多少?解:设这个两位数的十位数是x,个位数是y,则这个数是(10x+y)。 解得答:这个两位数是56。【例2】一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,这个两位数是多少?解:设这个两位数的十位数是x,个位数是y,则
8、这个数是(10x+y)。 解得答:这个两位数是72。【例3】某三位数,中间数字为0,其余两个数位上数字之和是9,如果百位数字减1,个位数字加1,则所得新三位数正好是原三位数各位数字的倒序排列,求原三位数。 解:设原三位数的百位数是x,个位数是y。 解得答:原三位数是504。类型九:浓度问题【例】要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各 需多少千克?解:设10%的盐水需x千克,85%的盐水需y千克。 解得答:10%的盐水需6.4千克,85%的盐水需5.6千克。类型十:几何问题【例1】用长48厘米的铁丝弯成一个矩形,若将此矩形的长边剪掉3厘米,补到较短边上 去,
9、则得到一个正方形,求正方形的面积比矩形的面积大多少? 解:设长方形的长为x厘米,宽为y 厘米。 解得(15-3)(9+3)-159=9(平方厘米)答:正方形的面积比矩形的面积大9平方厘米。 【例2】一块矩形草坪的长比宽的2倍多10 m,它的周长是132m,则长和宽分别为多少?解:设它的长为x m,宽为y m。 解得答:它的长为m,宽为m。类型十一:年龄问题【例】今年,小明的年龄是他爷爷的五分之一。小明发现,12年之后,他的年龄变成爷爷 的三分之一。小明今年多少岁?爷爷今年多少岁? 解:设小明今年x岁,爷爷今年y岁。 解得答:小明今年12岁,爷爷今年60岁。类型十二:优化方案问题 【例】某商场计
10、划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。(1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?解:(1)设购进x台甲种电视机,y台乙种电视机,z台丙种电视机。分情况:()购进甲、乙两种电视机 解得 ()购进甲、丙两种电视机 解得()购进乙、丙两种电视机 解得(舍去)答:商场的进货方案为购进25台甲种电视机和25台乙种电视机,或购进35台甲种电视机和15台丙种电视机。(2) 按方案(),获利15025200258750(元)按方案(),获利15035250159000(元) 87509000,选择方案()。答:选择购进35台甲种电视机和15台丙种电视机。