飞机起落架故障分析毕业设计论文.doc

上传人:仙人指路1688 文档编号:3995287 上传时间:2023-03-30 格式:DOC 页数:28 大小:1.51MB
返回 下载 相关 举报
飞机起落架故障分析毕业设计论文.doc_第1页
第1页 / 共28页
飞机起落架故障分析毕业设计论文.doc_第2页
第2页 / 共28页
飞机起落架故障分析毕业设计论文.doc_第3页
第3页 / 共28页
飞机起落架故障分析毕业设计论文.doc_第4页
第4页 / 共28页
飞机起落架故障分析毕业设计论文.doc_第5页
第5页 / 共28页
点击查看更多>>
资源描述

《飞机起落架故障分析毕业设计论文.doc》由会员分享,可在线阅读,更多相关《飞机起落架故障分析毕业设计论文.doc(28页珍藏版)》请在三一办公上搜索。

1、西安航空职业技术学院毕 业 设 计(论 文)论文题目: 飞机起落架故障分析 所属系部: 航空维修工程系专 业: 航空机电设备维修西安航空职业技术学院制 西安航空职业技术学院毕业设计(论文)任务书题目: 飞机起落架故障分析任务与要求: 对飞机结构检修中飞机烧伤事故进行分析研究,总结飞机烧伤的原理、特点、以及一些基本的维修方法。时间: 2012 年 10月03日 至 2012 年 11月24日 共 7 周所属系部: 航空维修工程系学生姓名: 陈勃兴 学 号: 105042-24专 业: 航空机电设备维修指导单位或教研室: 西安航空职业技术学院指导教师: 程 军 职 称: 机 械 师 西安航空职业技

2、术学院制2012年10月 08日毕业设计(论文)进度计划表日 期工 作 内 容执 行 情 况指导教师签 字10月3日至10月9日根据指导老师的要求以及自己几年来的所学,并在图书馆查阅大量的相关资料基础上,确定出几个论文的题目10月10日至10月16向指导老师汇报前段准备情况,最后确定的论文题目,并着手整理相关资料10月17日至10月23日根据整理的相关资料,初步建立起自己论文的基本框架,并和老师讨论是否合适,修改完善10月24至10月30日结合自己所学,对所掌握的资料进行合理的筛选后,初步形成论文的初稿,并发送给指导老师,接受老师的指导11月1日至11月6日就指导老师对初稿指出的相关问题,尤其

3、是论文格式问题,进行及时修改,尽量做到认真,以保证论文的理论正确性,并将修改后的电子稿再次发给老师11月7日至11月14日就指导老师再次提出的相关问题进行修改,并经过多次讨论,形成满足学校要求的论文11月14日至11月21日进一步完善论文,打印,提交,等待论文答辩教师对进度计划实施情况总评 签名 年 月 日 本表作评定学生平时成绩的依据之一。飞机起落架故障分析【摘要】起落架是飞机的重要组成部分,飞机的停放、起飞着陆主要是由起落架来完成的。所以起落架的工作性能直接影响了飞机的安全性和机动性。飞机起落架故障很多,本文主要针对歼七和歼八飞机的一些故障加以分析。主要阐述了歼八飞机主起落架机轮半轴裂纹故

4、障分析和歼七飞机起落架收放系统典型故障分析。关键词: 起落架 机轮半轴 裂纹 法兰盘 自动收起 油路堵死 电液换向阀Abstract:The landing gear is the important part of a plane, aircraft taking off and landing Park, mainly by the landing gear to complete. So the landing gear performance has a direct impact on the aircraft safety and mobility.Aircraft landing

5、 gear failures, this paper f 7 and fighter aircraft fault analysis. Mainly elaborated the J-8 aircraft main landing gear axle crack fault analysis and f 7 landing gear system of typical fault analysis.Key words: landing gear wheel axle crack flanges are automatically folded circuit blocked electro-h

6、ydraulic reversing valve目 录1.歼8飞机主起落架机轮半轴裂纹故障分析61.1引论61.1.1主起落架结构设计概况61.1.2 主起落架机轮半轴故障概况71.2主起落架机轮半轴失效分析81.2.1主起落架机轮半轴受力分析81.2.2 机轮半轴裂纹检测及断口分析91.3 主起落架机轮半轴疲劳试验结果111.3.1 机轮半轴疲劳试验破坏部位111.3.2 试验结果与使用情况差异分析121.3.3外场飞机使用特点分析121.3.4 主起落架机轮半轴失效分析结论131.4主起落架机轮半轴结构设计改进131.4.1半轴结构设计改进原则131.4.2半轴结构细节设计改进131.5

7、经验教训141.5.1 设计载荷谱、变形预测与实际使用情况相符141.5.2完善细节抗疲劳设计和强化工艺是提高结构抗疲劳开裂的重要技术途径141.5.3地面疲劳试验验证刚度模拟要真实141.5.4制定合理的检修周期是确保使用安全的重要措施142歼七飞机起落架收放系统典型故障分析152.1歼七飞机前起落架自动收起的故障研究152.1.1起落架收放控制原理分析152.1.2起落架自动收起原因分析162.2.1 电液换向阀性能不良162.3 故障验证182.4维修对策182.4.1改进起落架收放管路的设计192.4.2提高产品质量,加强安装前的检查19结束语20谢 辞21参考文献221.歼8飞机主起

8、落架机轮半轴裂纹故障分析1.1引论1.1.1主起落架结构设计概况歼8飞机起落架为前三点式布局,由1个前起落架、2个主起落架组成,其中主起落架安装左右机翼上。飞机停放时,起落架起着支撑作用;飞机地面滑行时、起飞着陆时,起落架起着缓冲作用,同时将地面载荷传迹到机身上。主起落架收起后,支柱收在机翼内,而机轮则绕活塞杆下部的转轴转动7723收入机身两侧。图11-1主起落架为支柱式结构,由缓冲支柱、带刹车机轮、收放作动筒、转轮机构、上位锁、终点开关和护板等组成,如图111所示。其中缓冲支柱主要是由外筒、活塞杆、机轮半轴、扭力臂和装于支柱内部的柱塞式缓冲器所组成。由锻铝合金制造的带刹车的机轮即安装在机轮半

9、轴上。轮轴的一端制有接头,与活塞杆下端耳片铰接,并制有连接转轮机构的耳片。轮轴上还制有千斤顶顶窝和安装传递撞击载荷的止动螺栓的轴孔。 早期歼8飞机的支柱外筒、活塞杆、轮轴等主要受力件均采用超高强度钢GC4(40CrMnSiMoVA)模锻件制造,并进行喷丸强化及直接涂漆表面处理。在后续机型中,支柱外筒、活塞杆、轮轴等主要受力件采用了更为先进的超高强度钢300M(40CrNi2Si2MoVA)模锻件制造,并进行喷丸强化及镀铬钛、涂漆的表面处理和表面防护。 GC4钢是超高强度钢,具有良好的工艺性能和综合力学性能,对缺口和氢脆有较高的敏感性。热压力加工成形性能良好,但对过热较敏感,不允许采用气焊和镀锌

10、工艺。 300M钢也是一种中碳低合金超高强度钢,具有高淬透性,淬火加低温回火后强度达1960MPa,兼有优良的横向塑性、断裂韧度、抗疲劳性能,但对缺口和氢脆也有较高的敏感性,一般不推荐焊接。无论是GC4钢还是300M钢,由于对应力集中的敏感性,所以在零件设计时,尽可能选用大的截面过渡半径,并用选用较小的粗糙度值,保持零件表面光滑。此外,在生产和使用中要严格控制热处理、表面处理等工艺过程,防止产生氢脆。对于GC4钢制造的机轮半轴,早期机型机轮半轴寿命为3000多个起落,后续机型机轮半轴寿命4000多个起落,并规定在弟二次大修时更换机轮半轴,载荷谱中没有考虑腐蚀因素。1.1.2 主起落架机轮半轴故

11、障概况歼8后续机型某架飞机在夜航第二个起落着陆过程中,当距跑道端头550m时,右侧主机轮及刹车组件脱离飞机,右主起落架机轮半轴折断、支柱着地,活塞杆连接机轮半轴耳片处和机轮半轴下表面磨损约15mm,飞机其他部位无损伤。该右主起落架已使用了909个起落。机轮半轴从法兰盘内外两侧断为3截,法兰盘外侧轮轴断开不规则,呈45角;法兰盘内侧轮轴断口截面比较平整垂直.在歼8飞机大修时,在主起落架机轮半轴上连续发现裂纹,这些机轮半轴起落次数约在1400个起落左右。在普查中陆续发现,约有23 的飞机机轮半轴出现裂纹,其中近61起落次数在1300起落以上,近20在10001300起落之间,近19在1000起落以

12、下。裂纹发生的部位在机轮半轴法兰盘外圆根部倒角变截面处,具体在安装止动螺钉的凹面台阶背面法兰盘弟1孔附近的变截面处角度的范围内,见图113。图11-3裂纹方向均沿着变截面的交界线,裂纹长度最短的为3mm,最长的为80mm。在出现裂纹的这些机轮半轴上未发现锈蚀情况。1.2主起落架机轮半轴失效分析1.2.1主起落架机轮半轴受力分析机轮半轴在起落架上的安装及其结构如图114所示。飞机在起飞、着陆、滑行、刹车和转弯等情况下,所有地面传来的载荷及飞机着陆接地时产生的撞击能量均通过机轮半轴传到活塞杆上。应力分析结果表明,歼8机种主起落架机轮半轴的应力较高图11-4机轮刹车装置借助9个螺栓将刹车壳体安装在轮

13、轴的法兰盘上,法兰盘R2圆角处与机轮刹车壳体有配合关系,刹车壳体该处倒角尺寸为2.5mm45。机轮半轴的法兰盘主要承受飞机刹车时产生的扭矩,裂纹所在处的第1螺栓孔在刹车过程中受力较大,并且在R2圆角处的应力集中加大了剪切作用(图11-5);图11-5另外飞机着陆时机轮着地瞬间,地面载荷分别作用机轮垂直向上的载荷和逆航向载荷,二者的合力在扇形区内作用给半轴,对其根部形成剪切和弯曲作用。上述3种载荷传至半轴根部,必然会产生较大的工作应力。再考虑R2圆角多应力集中因素,其应力水平还将大幅度提高。正是作用在R2圆角处的剪应力和弯曲正应力的共同循环作用,结果在该处产生疲劳裂纹。1.2.2 机轮半轴裂纹检

14、测及断口分析1 外场机轮半轴断裂检查目视观察,机轮断成3部分,法兰盘内侧轮轴断口比较平直,沿法兰盘R2处有近一周的封闭裂纹。封闭裂纹断口为疲劳断口形貌特征,疲劳源为线性多源(周向沿加工痕迹长约25mm)。源区位于轮轴法兰盘第一安装孔附近的内侧下方R2处,源区局部有擦伤,源区附近未发现明显的冶金缺陷。疲劳裂纹从左下方沿法兰盘圆周方向逆时针扩展了300余度后,分成两叉,一叉沿法兰盘外侧轮轴快速扩展,另一叉沿法兰盘内侧轮轴快速扩展。断口上疲劳弧线、放射棱线明显,粗大的放射线指示出疲劳扩展方向,端口上有多条明显的疲劳弧线。在扫描电镜下观察,在源区附近和扩展区均可见到韧窝带或局部疲劳条带等疲劳微观特征,

15、大部分区域为韧窝形貌。基于上述观察结果,初步判断轮轴断裂属于高应力低调疲劳断裂。轮轴由GC4钢模锻制造加工。在法兰盘部位沿模锻件纵向切取试样进行测评,平均强度值符合设计要求(19010Kgf),且偏于上线,见表112。表112 显微硬度及换算值序号HVO.2HRC(换算值)强度值(换算值)/MPa图样要求值/MPa1562531928186210025625319283577542004455752.81921平均值564.553.21940注:表中HV指维氏硬度,0.2表示测量冲击压力为0.2Kgf。对照国标GB 10561(钢中非金属夹杂物显微评定方法),检测样品的硫化物等级为0.5级,氧

16、化物夹杂等级为1级,夹杂物总和为1.5级,符合技术要求。经检测,样品晶粒度等级为7.5级,符合技术要求。用4的硝酸酒精溶液侵蚀样品,在400倍显微镜下观察组织,金相组织为正常的淬火、回火组织。化学成分检测结果见表113,其中碳含量偏于上线。 表113 化学成分分析结果 wt类别CMnSiCrMoVSPAl测量值0.420.981.311.360.530.080.0020.0210.03标准值(YB12091983)0.360.420.801.201.201.601.201.500.450.600.070.120.0250.0250.10经检测,法兰盘腹板与机轮表面粗糙度、安装孔直径、法兰盘厚度

17、、过渡圆角等均符合设计要求。由此可知,零件材质、尺寸符合设计要求;源区有磨损,附近未冶金缺陷和外来损伤,裂纹较平直,有氧化特征,为疲劳断口形貌。疲劳源特征为线性多源,裂纹始于轮轴法兰盘第一安装孔附近的内侧下方R2处,属于高应力低周疲劳断裂 。2大修厂机轮半轴裂纹检查经外观检查,发现长约45mm、最深处约2mm的裂纹,为穿透壁厚,裂纹位置同图112。断口比较平直,有氧化特征,为多源疲劳断口形貌。断口上有多条明显的疲劳弧线,并有较粗大的放射棱线,指向疲劳裂纹的扩展方向。疲劳源特征为线性多源,源区位于轮轴法兰盘第一安装孔附近的内侧下方R2处。源区局部有磨损,源区附近未见冶金缺陷。经低倍检查,裂纹位于

18、零件法兰盘内侧轮轴前端第一安装孔R2尺寸根部,沿法兰盘内侧轮轴R2处延伸。裂纹具有台阶状线源疲劳开裂特征。裂纹处未见划伤、碰伤以及明显的加工痕迹。在扫描电子显微镜下观察断口,发现在源区附近及扩展区均存在韧窝带或局部疲劳条带等疲劳微观特征,其他大部分区域为韧窝结构,断口上疲劳部分有氧化特征。用3的硝酸酒精溶液浸蚀金相试样,在400倍显微镜下观察组织,基体金相组织为正常的淬火、回火组织。裂纹较平直,开口度约为5um,从裂纹形貌上看具有疲劳开裂的特征。 在法兰盘部位沿模锻件纵向切取试样测试,平均强度值偏上线(显微硬度值换算后与实际强度值有一定的偏差),符合设计要求。边缘显微硬度测试结果表明,零件边缘

19、脱碳深度符合设计要求。显微硬度测试结果见表114. 表114 显微硬度测试结果项目距边缘25um(HKO.5)距边缘50um(HKO.5)距边缘75um(HKO.5)中心(HKO.5)14965405565692499543553566349754255757144955435525685493541554570平均值496541.9554.45611.8化学成分测试结果符合零件材质要求,见表115。 表115化学成分分析结果类别CMnSiCrMoVSPAl测量值0.400.991.331.350.500.090.0030.0020.05标准值(YB12091983)0.360.420.801

20、.201.201.601.201.500.450.600.070.120.0250.0250.10经检测,法兰盘腹板与机轮表面粗糙度、安装孔直径、法兰盘厚度、过渡圆角等均符合设计要求。由此可知,零件材质、尺寸符合设计要求;源区有磨损,附近未见冶金缺陷和外来损伤,裂纹较平直,有氧化特征,为疲劳断口形貌。疲劳源特征为线性多源,裂纹始于轮轴法兰盘第一安装孔附近的内侧下方R2处,属于高应力低周疲劳断裂,同外场断裂件检查结果。1.3 主起落架机轮半轴疲劳试验结果1.3.1 机轮半轴疲劳试验破坏部位歼8后续机型主起落架疲劳试验时,机轮半轴在20000多次起落时发生断裂,折合使用寿命为4000多个起落。断裂

21、位置是根部销钉孔处,如图116所示。从中可以看出,与外场飞机发现裂纹的部位完全不同。图11-61.3.2 试验结果与使用情况差异分析机轮半轴在疲劳试验和外场使用中所暴露的破坏部位、寿命存在较大差别,主要因为:(1)机轮半轴在疲劳试验模拟与飞机真实机轮的刚度存在差别疲劳试验用假机轮与真实机轮不同。前者采用钢材料制造,由焊接拼合制成,其刚度较大;而后者使用锻铝、钢等多种材料制成,轮毂上套装轮胎,其刚度比疲劳试验所用的假机轮刚度小的多。因此,在实际使用中,由于真实机轮刚度较小,容易产生变形,会使侧向载荷的能力较弱。而疲劳试验所用的假机轮由于刚度较大,不存在变形,侧向载荷直接通过轮轴传走,不会传到法兰

22、盘上。因此,疲劳试验中法兰盘的应力水平低于外场使用情况,这是出现二者寿命差异的因素之一。(2)外场刹车载荷谱偏重虽然疲劳试验采用的是实测过载谱,但由于使用情况的不断变化,实测的刹车谱已经不能反映出所有外场飞机使用刹车的实际情况。统计数据表明,后续机型在外场使用中,超过正常着陆重量的着陆次数已达到23左右。由于主要在着陆滑跑过程中使用刹车,随着超过正常着陆重量着陆次数的增多,飞机使用刹车也比过去严重,因此对于机轮半轴法兰盘使用也比过去严重,导致其应力偏高、寿命偏短。(3)超常着陆所产生的冲击载荷和摩擦载荷对半轴根部和法兰盘产生影响飞机超正常着陆时,地面的垂直冲击载荷和摩擦载荷的合力通过机轮传给半

23、轴,对半轴根部产生弯曲和剪切作用,使其应力水平进一步提高;同时,使机轮和半轴产生变形的趋势增大,对法兰盘的侧向作用载荷加大,使其应力水平同时增加。而这些实际情况在疲劳试验中未得到真实模型。1.3.3外场飞机使用特点分析对外场4家单位的飞机起飞着陆情况进行调查发现,超过最大着陆重量的着陆情况没有发生过,而超过正常着陆重量的着陆次数已达到20左右。考虑到少数起落中还要求机身挂副油箱。机翼中挂点挂1枚或者2枚导弹等因素,保守估计,超过正常着陆的起落次数将会达到23左右。而通常要求飞机超过正常着陆重量着陆的起落次数不应超过10。1.3.4 主起落架机轮半轴失效分析结论(1)本文b中所述的机轮半轴断裂个

24、案与外场普查所发现的机轮半轴裂纹性质相同,均属于高应力低周疲劳断裂。裂纹是在使用过程中产生的,其萌发和扩展经历一段循环周期。(2)在实际使用中,因机轮和半轴会出现弹性变形,导致法兰盘上产生侧向载荷;23的超过正常着陆重量着陆的起落次数会进一步增大侧向载荷作用,同时使半轴根部和法兰盘的应力水平提高。(3)半轴在法兰盘根部过渡圆角处存在应力集中,导致该处应力水平提高。(4)疲劳寿命实验中机轮半轴的考核结果未能真实模拟实际使用情况。(5)半轴、法兰盘与机轮的材质、几何尺寸、表面粗糙度等均符合设计要求,未发现意外损伤。1.4主起落架机轮半轴结构设计改进1.4.1半轴结构设计改进原则(1)基于成本和周期

25、考虑,结构设计改进仅局部于机轮半轴和机轮,而不涉及更多零件组件的设计更改。对半轴结构细节进行设计改进,提高其抗疲劳开裂能力。机轮进行协调性更改。(2)加强对设计改进后机轮半轴的疲劳特征评定。(3)对机轮半轴的设计改进方案不应涉及其锻造模具的更改,以节省周期和成本。(4)经设计改进后,新的机轮半轴能够在外场条件下方便更换,以尽快满足外场部队的需要。(5)加强对原主起落架机轮半轴的监控,保证飞机的使用安全。1.4.2半轴结构细节设计改进(1)将机轮半轴法兰盘厚度增加1mm,根部圆角半径增加1.5mm;(2)将连接机轮半轴法兰盘和机轮刹车壳体的螺栓长度增加1mm;(3)将机轮刹车壳体与半轴法兰盘配合

26、部位的倒角宽度增加2mm;(4)对喷丸工艺参数进行优化选取,提高半轴结构细节工艺强化的寿命增益。1.5 经验教训1.5.1 设计载荷谱、变形预测与实际使用情况相符在机轮半轴故障整治过程中,通过深入分析发现,载荷谱中未计及23超常着陆载荷、着陆瞬间由机轮传给半轴的冲击载荷和摩擦载荷的影响;在外力作用下,机轮和半轴的弹性变形导致法兰盘变形协调而产生附加作用力。这些因素在设计载荷谱中均未考虑,与飞机主起落架的实际使用情况不符,导致机轮半轴、法兰盘的工作应力水平过高。如果机轮半轴应力水平过高、细节设计考虑不够充分,就容易发生低周疲劳破坏,即高应力、低循环疲劳破坏。1.5.2完善细节抗疲劳设计和强化工艺

27、是提高结构抗疲劳开裂的重要技术途径改进细节设计,可有效地消除刚度突变、降低应力集中程度,进而控制薄弱细节的工作应力水平,达到延长结构疲劳寿命的目的。将机轮半轴法兰盘厚度增加1mm、根部圆角半径增加1.5mm、机轮刹车壳体与半轴法兰盘配合部位的倒角宽度增加2mm都是为改进细节设计所采取的具体措施。合理的工艺强化措施可有效地获取疲劳寿命增益,对机轮半轴的喷丸工艺参数、喷丸部位进行优化选取,是为了完善半轴结构细节工艺强化措施。1.5.3地面疲劳试验验证刚度模拟要真实在主起落架疲劳试验中,机轮刚度模拟与飞机实际使用情况相差较大,由于结构变形协调,必然产生彼此牵连的附加载荷,对半轴结构细节疲劳特性可能会

28、产生影响。因此,地面疲劳试验所暴露的疲劳开裂部位、周期、形态等与真实情况可能存在差异,亦即由于模拟不够真实,可能导致地面疲劳考核试验的结果不能完全反映飞机的使用情况。因此,地面疲劳试验验证模拟要尽量真实,这样才能有效暴露疲劳薄弱部位,达到验证或预测结构寿命的目的。1.5.4制定合理的检修周期是确保使用安全的重要措施如前面A-b所述,在909个起落时右主起落架半轴首次发生断裂事故;大修时发现机轮半轴上裂纹的起落次数约在1400个起落左右;普查中发现,约有23的飞机机轮半轴出现裂纹,其中近61起落次数在1300个起落以上,近20在10001300个起落之间,近19在1000个起落以下。这些裂纹明显

29、对飞机安全使用构成威胁,甚至是巨大隐患。只有制定并执行安全检查,及时发现并排除半轴裂纹,才能保证飞机的使用安全。2歼七飞机起落架收放系统典型故障分析2.1歼七飞机前起落架自动收起的故障研究起落架收放系统是飞机的重要组成部分,此系统的工作性能直接影响到飞机的安全性和机动性改进设计飞机起落架收放系统主要用于控制起落架的收上与放下,控制主起落架舱门和前起落架舱门的打开与关闭,是飞机一个重要的系统,其能否正常工作将直接影响飞行安全。因此对该系统的维护和对所出现的故障进行分析研究,并进行有效的预防就显得十分重要。某单位在对某新型飞机做出厂试飞准备时,当机组人员接上地面压力源和电源进行该机的停机刹车压力调

30、整时,在供压13min后,前起落架开始缓慢收起,飞机机头失去支撑最终导致机头接地,造成雷达罩和前机身02段蒙皮撕裂、结构损坏和前起落架变形等严重后果。本文将对前起落架自动收起的故障进行分析研究,并在此基础上针对性地提出预防措施。2.1.1起落架收放控制原理分析图2-1 前起落架收放系统原理图前起落架收放系统原理如图2-1所示。正常收起落间隙时,起落架收放手柄(下简称手柄)处于收上位时,电液换向阀l使高压油进入收上管路,放下管路b回油管路相通。在高压油的作用下,下位锁作动筒的活塞杆缩进,下位锁打开。另一路高压油一方面液控单向阀13打开,使舱门作动筒10、12的回油略沟通;另一方面油通过限流活门9

31、进入收放作动筒,使活塞杆伸出,起落架收起,作动筒8的回油经脚向活门7、应急转换活门4、电液换向阀1和应急排油活门2流入油箱。当起落架收好后,协调活门11压通,高压油进入舱门作动筒lO、12的收上腔使舱门收起。当手柄处于放下位置时,来油与放下管路接通,收上管路与回油路相通,起落架放下。在系统中还设有地面联锁开关,当飞机停放时,联锁开关自动断开电液换向阀的电路,此时即使将手柄置于收起位置,电液换向阀也不会工作,从而防止了地面误收起落架。2.1.2起落架自动收起原因分析由起落架收放控制原理知道,前起落架放下位置是由带下位锁的后撑杆来保持的,所以要使前起落架收起,必要条件是下位锁开锁。而下位锁开锁有两

32、种情况:第一种是机械原因,即放下起落架时下位锁处于假上锁状态,在维修和使用过程中受到某种外力扰动而开锁;第二种是液压原因,即有液压油进入下位锁开锁作动筒,使作动筒活塞杆缩进导致下位锁开锁。而外部检查和事后的收放检查均未发现下位锁有假上锁的现象。因此前起落架自动收起是由液压方面的原因引起的。而由液压原因引起下位锁开锁的因素很多。当电液换向阀工作不正常使来油与收上管路相通,或者联锁开关故障,地面又误将手柄置于收上位置,在电液换向阀工作时,当给飞机供油压时,都会使下位锁开锁。但这两种情况会使前起落架以较快的速度收起而不会缓慢收起,另外也会同时收起主起落架。但这与事故发生时的实际情况不符,因此基本可以

33、排除。2.2.1 电液换向阀性能不良起落架电液换向阀用于起落架收放管路的控制,是一种三位四通电液阀,当手柄在中立位置时(不通电),电液换向阀处于中立位置,图2-2电液换向阀中立位置(断电)此时供油路堵死,起落架的收、放管路均与回油路相通,如图2-2所示。由于滑阀与阀套之间都有径向间隙6,由6形成两个相同的矩形节流缝隙,此缝隙的节流面积为A=W8,由于形6,且通过此节流口的流量很小,雷诺数m也很小,流动状态属于层流,故通过此节流口的流量Q为:式中:节流口两侧压力差;动力粘度系数;节流口面积梯度。则此时,通过2个节流口处的流量为:式中:主液压系统供油压力;回油管路压力。由上式可知,泄漏量的大小主要

34、由节流口面积梯度形和径向间隙6确定,当间隙6越大,则泄漏量越大。而形的大小主要与阀芯的直径有关,直径越大梯度越大;6的大小主要与阀口的形状、制造工艺和加工质量等有关,当设计合理、工艺水平和加工质量高、滑阀和阀套之间没有偏心时,则6就小。如果是新阀,径向间隙小,故泄漏量也小;如果是旧阀,由于控制边被磨损,泄漏面积增大,则泄漏量也增大。为测定泄漏量的大小,拆下电液换向阀,堵住通向作动筒的两个接头,在供压接头处加液压2059MPa在回油接头处接上量杯。3min后,在回油接头处漏油量为45mL,远大于所规定的不超过20mL的要求。电液换向阀泄漏示意图如图2-3所示。图2-3电液换向阀泄露示意图2.2.

35、2 系统不完整,回油路堵死为了提高起落架收放系统的可靠性,在系统设计中采用了余度技术。即当正常收放起落架失效时,飞行员可以采用冷气应急放下起落架,以保证安全着陆,如图1所示。为防止应急放起落架时,大量液压油回到密闭增压油箱,使油箱因回油过多而引起爆破,为此在电液换向阀的回油路上安装了应急排油活门。应急放起落架时,将收上管路的油液直接排到机外。平时,在主液压系统供压且电液换向阀不工作时,电液换向阀泄漏到收放管路中的油液可以通过应急排油活门直接流入回油管路中,因此不会引起收放系统的压力升高;如果回油管路被堵死,不能回油时,则泄漏油将进入收放系统(参看图2-l、2-2),使系统压力升高,当压力升高到

36、一定值时就会引起系统故障。据了解,在发生本次事故前,应急排油活门因故障拆下修理,用堵头将回油路堵住,使起落架收放系统不能回油。这样,电液换向阀泄漏到收放管路的压力油就不能释放掉,收放系统的油压将逐渐升高。由于前起落架下位锁的开锁压力比主起落架的小,因此当压力达到一定值后,就会首先使前起落架下位锁开锁,这样飞机在自重的作用下就会引起前起落架自动收起。2.3 故障验证为了验证上述分析是否正确,在原飞机上进行了以下试验:(1)给主液压系统供压并通电,把手柄放在中立位置。保持30min后,前起落架下位锁没有任何动作。这说明在系统完整的情况下,因电液换向阀的渗漏而进入收放系统的压力油可以从应急排油活门处

37、及时排出系统回油箱。(2)为模拟事故当时的系统环境,将应急排油活门拆下,并用堵头堵住回油路。给主液压系统供压5min后,前起落架下位锁就开始动作,到6min时下位锁完全开锁。该项试验足以证明从起落架电液换向阀泄漏进入起落架收放系统的油液确实能够将前起落架下位锁打开,说明上述分析是完全正确的。2.4维修对策由以上分析和验证可知,本次事故的原因有两个:一是起落架电液换向阀泄漏量超过规定;二是起落架收放系统不完整,使系统丧失了对不良因素的“自我消化”能力。为了有效预防此类事故的发生,建议采取以下措施。2.4.1改进起落架收放管路的设计经仔细分析后不难发现,该型飞机在系统的设计方面存在一些不足。应急排

38、油活门的功用是应急放起落架时将收上管路的油液排到机外。由于应急排油活门是安装在系统的回油管路上的,一方面当应急排油活门出现故障时,将会影响整个系统的回油,进而影响系统的工作;另一方面当电液换向阀故障使收上管路不能回油时,则在应急放起落架时,收上管路的油液就无法从应急排油活门排到机外,就会使起落架无法应急放下,即应急放起落架还要受到电液换向阀工作的影响。该型飞机在定型试飞过程中就曾发生过应急放起落架未放到位的故障,其原因就是由于电液换向阀的故障引起的。所以这种安装是不科学的,它使系统的可靠性和安全性降低。但是如果将应急排油活门安装到收上管路,即电液换向阀收上接头的出口处,则既不会影响应急排油活门

39、的功能,又能提高系统的可靠性,也不会发生上述事故。因此,建议有关部门经充分论证后,将应急排油活门安装到电液换向阀收上接头的出口处。2.4.2提高产品质量,加强安装前的检查电液换向阀是起落架收放控制系统的核心附件,对其制造质量和性能指标都有具体的要求。但在实际生产和使用过程中,人们往往重视它的功能,而对它的泄漏量等指标的规定不太重视,总认为泄漏量的大小对系统的工作和性能没有什么影响。因此建议一方面要努力提高工艺水平和加工质量,保持滑阀和阀套的同心,以尽可能地减少滑阀与阀套之间的径向间隙,另一方面在装机使用前一定要加强对其各种性能指标的测定,对泄漏量超过规定的电液换向阀不允许安装使用。 结束语经过

40、三个月时间我顺利的完成了我的毕业设计,这三个月对我来说很重要。让我受益匪浅,不仅锻炼了良好的逻辑思维能力,而且培养了我弃而不舍的求学精神和严谨作风。回顾此次毕业设计,是大学三年所学知识很好的总结 此次到处寻找文件不仅重温了过去所学知识,而且学到了很多新的内容。相信这次毕业设计对我今后的工作会有一定的帮助。所以我用心的把它完成。在设计中体味艰辛,在艰辛中体味快乐。谢 辞我毕业设计及毕业论文的完成,得到了很多同学和老师的帮助,因此,我要向他们表示最真挚的感谢。尤其要感谢我的指导老师宋双杰老师。历经近三个月的时间,我的论文终于圆满完成,这不仅仅是我完成了老师下达的任务,更是对我大学整个专业知识的一次

41、升华!在写论文的过程中,我深深感觉到我的专业知识还待进一步的完善,基础知识还得进一步夯实!知识面的狭窄是我完成这篇论文最突出的一个问题,在充分认清了我的不足后,我更加努力地利用我打工业余的时间来搜集大量的专业资料,并尽量吸收其中的精华,最终通过自己的独立思考将之转变为自己的东西,并在一定程度上提出了自己的一些见解,较成功的实现了由理论转为实践的最终目的!当然,论文能顺利完成离不开指导教师的教诲,特别在学期的实习中,您一直灌输我们“多思考,多动手”的意识,这在我构思论文时去积极的独立思考并解决一些实际的问题起到了很好的启蒙作用!在此向您及所有的指导教师道一声:您辛苦了!在以后的工作中,我会继续秉

42、承您的教诲,以一个优秀员工的行动给老师争光,给航院添彩!完成论文期间我并没有专业实习的机会,虽然我很努力地去写好我的论文,但由于自己的知识面的狭窄及实习经验的匮乏,这篇论文难免会有一些漏洞或不足,恳请您的谅解! 谢谢您,宋老师!同时还要感谢我的同学们,三年的大学生活,他们帮助我学到了很多,使我懂得了很多道理,同时也打下了良好的基础,我才能顺利的完成这次的毕业论文设计,以及能在以后的工作生活中,不断的开拓进取。再次的感谢你们,谢谢!参考文献1Gunther c k.Goranson UG.斯而健 谱载荷对飞机主结构件中裂纹扩展的影响。 1987;3-102 黄树执歼七飞机构造讲义M空军工程学院。

43、1987;10-113史纪定液压系统故障诊断与维修技术北京:机械工业出版社,199011-134 杨闽桢飞机机体传动与控制M空军工程学院。1986;14其实学会放弃比学会坚持更难得,因为那需要更多的勇气和智慧。 放弃是一种智慧,是一种豪气,是更深层面的进取。我们有时之所以举步为艰,是因为背负太重;之所以背负太重,是因为还不会放弃。功名利禄常常微笑着置人于死地。诗人泰戈尔说:当鸟翼系上黄金时,就飞不远了。学会放弃,才能卸下人生的种种包袱,轻装上阵,迎接生活的转机,度过风风雨雨;懂得放弃,才拥有一份成熟,才会更加充实、坦然和轻松。放弃了忧愁,与快乐结伴,放弃了名利,步入超然的境地。 生命的幸福原来

44、不在于人的环境、人的地位、人所能享受的物质,而在于人的心灵如何与生活对应。因此,幸福不是由外在事物决定的,贫困者有贫困者的幸福,富有者有其幸福,位尊权贵者有其幸福,身份卑微者也自有其幸福。在生命里,人人都是有笑有泪;在生活中,人人都有幸福与忧恼,这是人间世界真实的相貌。 当爱像明媚的阳光一样照彻寒冷的心房时,我们会发现,爱的本身就是一波震颤的弦音,一种花香的弥散,持久,热烈,而又延己及人从一双手到另一双手,从一个人到另一个人。这是从施爱者灵魂深处飘散出来的温暖,它苏醒着精神世界中一行疲惫的足迹、一颗受了冷漠的心灵,然后,得了爱的人会在自己的心田擦亮火柴般地用一份温暖去照耀另一颗心,尽管有时是那么微弱。 南方的山向来不如北方的高大巍峨,到了冬日更失了往日的润朗,之留下了略带灰蒙的身影悄然耸立于天地间。默守着一份寂静。倘若在北方,来一场大雪,将群山覆盖上一层苍茫的白色,那有是一副磅礴的好图景,巍芒间孕育着新的希望。只可惜南方无雪,如同土丘半散漫开的小山零零落落的点缀在辽阔的江汉平原上,山间便只剩下松柏苍翠的影子,但之绿色都如同带着一层霜,淡绿中隐隐的泛出青灰。远望去仿佛被飞扬

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号