椭圆性质总结及习题.doc

上传人:牧羊曲112 文档编号:4034913 上传时间:2023-04-01 格式:DOC 页数:5 大小:373.50KB
返回 下载 相关 举报
椭圆性质总结及习题.doc_第1页
第1页 / 共5页
椭圆性质总结及习题.doc_第2页
第2页 / 共5页
椭圆性质总结及习题.doc_第3页
第3页 / 共5页
椭圆性质总结及习题.doc_第4页
第4页 / 共5页
椭圆性质总结及习题.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《椭圆性质总结及习题.doc》由会员分享,可在线阅读,更多相关《椭圆性质总结及习题.doc(5页珍藏版)》请在三一办公上搜索。

1、椭 圆重点:椭圆的定义和椭圆的标准方程;会用定义法、待定系数法求椭圆标准方程。 难点:椭圆标准方程的推导与化简;用椭圆的定义求椭圆的方程。1 椭圆的两种定义:平面内与两定点F1,F2的距离的和等于定长的点的轨迹,即点集M=P| |PF1|+|PF2|=2a,2a|F1F2|;(时为线段,无轨迹)。其中两定点F1,F2叫焦点,定点间的距离叫焦距。平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M=P| ,0e1的常数。(为抛物线;为双曲线)2 标准方程:(1)焦点在x轴上,中心在原点:(ab0);焦点F1(c,0), F2(c,0)。其中(一个)(2)焦点在y轴上,中

2、心在原点:(ab0);焦点F1(0,c),F2(0,c)。其中注意:在两种标准方程中,总有ab0,并且椭圆的焦点总在长轴上;两种标准方程可用一般形式表示:Ax2+By2=1 (A0,B0,AB),当AB时,椭圆的焦点在x轴上,AB时焦点在y轴上。3参数方程 :椭圆的参数方程 4.性质:对于焦点在x轴上,中心在原点:(ab0)有以下性质:坐标系下的性质: 范围:|x|a,|y|b; 对称性:对称轴方程为x=0,y=0,对称中心为O(0,0); 顶点:A1(-a,0),A2(a,0),B1(0,-b),B2(0,b),长轴|A1A2|=2a,短轴|B1B2|=2b;(半长轴长,半短轴长); 准线方

3、程:;或 焦半径公式:P(x0,y0)为椭圆上任一点。|PF1|=a+ex0,|PF2|=a-ex0;|PF1|=a+ey0,|PF2|=a-ey0;平面几何性质: 离心率:e=(焦距与长轴长之比);越大越_,是_。 焦准距;准线间距二、焦点三角形结论一:若、是椭圆的两个焦点,是椭圆上一点,且,当点P位于_时最大,cos=_.|PF1|PF2|的最大值为_. 结论二:过椭圆焦点的所有弦中通径(垂直于焦点的弦)最短,通径为_。三中点弦问题是椭圆的一条弦,中点M坐标为,则直线的斜率为 。四弦长问题. (1)斜率为的直线与圆锥曲线相交于两点,则所得的弦长 或 .(2)当直线的斜率不存在时,可求出交点

4、的坐标,直接运算;(3)经过圆锥曲线的焦点的弦(也称为焦点弦)的长度问题,可利用圆锥曲线的定义,将其转化为利用 ,往往比利用弦长公式简单。五X轴正半轴到椭圆的最短距离问题:已知椭圆,则点(m ,O)到椭圆的最短距离为:_.六过椭圆上点切线问题若在椭圆上,则过的椭圆的切线方程是.习 题1、 求椭圆的长轴和短轴的长,离心率,焦点和顶点的坐标。2、已知椭圆的焦点为和,P是椭圆上的一点,且是与的等差中项,则该椭圆的方程为_。3、 椭圆上的一点M到左焦点的距离为2,N是的中点,则ON的长是_。4、 如果方程表示焦点在x轴上的椭圆,那么实数k的取值范围是_。5、 过椭圆的左焦点作x轴的垂线交椭圆于点P,为

5、右焦点,若,则椭圆的离心率为_。6、 设是椭圆的两个焦点,以为圆心且过椭圆中心的圆与椭圆的一个焦点为M,若直线与圆相切,则该椭圆的离心率为_。7、点P是椭圆上一点,F1,F2是椭圆的两个焦点,且PF1F2的内切圆半径为1,当P在第一象限时,P点的纵坐标为_. 8、(2009年上海卷理)已知、是椭圆(0)的两个焦点,为椭圆上一点,且.若的面积为9,则=_.9、(2009北京文)椭圆的焦点为,点P在椭圆上,若,则 ;的大小为 .10、已知椭圆的左、右焦点分别为、F2,点P在椭圆上,若P、F1、F2是一个直角三角形的三个顶点,则点P到轴的距离为_。 11、设点P(x,y)在椭圆,(1)试求点P到直线

6、的距离d的最大值和最小值。(2) 求x+2y的最小值。12、已知椭圆的离心率为,过右焦点且斜率为的直线与相交于两点若,则_。(A)1 (B) (C) (D)213、(2007四川理)设、分别是椭圆的左、右焦点.()若是该椭圆上的一个动点,求的最大值和最小值;()设过定点的直线与椭圆交于不同的两点、,且为锐角(其中为坐标原点),求直线的斜率的取值范围. 14、已知椭圆的中心在原点,焦点在x轴上,点(是其左顶点,点在椭圆上,且,()求椭圆的方程;()若平行于的直线和椭圆交于两个不同点,求面积的最大值,并求此时直线的方程 15、 已知椭圆的离心率为,长轴长为,直线 交椭圆于不同的两点,()求椭圆的方

7、程;()若,且,求的值(点为坐标原点);()若坐标原点到直线的距离为,求面积的最大值16、在直角坐标系中,点到F1、F2的距离之和是4,点的轨迹 与轴的负半轴交于点,不过点的直线:与轨迹交于不同的两点和(1)求轨迹的方程;(2)当时,求与的关系,并证明直线过定点 17、已知点是椭圆上的一点,,是椭圆的两个焦点,且满足.()求椭圆的方程及离心率; ()设点,是椭圆上的两点,直线,的倾斜角互补,试判断直线的斜率是否为定值?并说明理由. 18、已知椭圆(0)的离心率,连接椭圆的四个顶点得到的菱的面积为4()求椭圆的方程;()设直线与椭圆相交于不同的两点已知点的坐标为(-,0),点(0,)在线段的垂直平分线上,且=4求的值

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号