《条件概率及全概率公式练习题.doc》由会员分享,可在线阅读,更多相关《条件概率及全概率公式练习题.doc(8页珍藏版)》请在三一办公上搜索。
1、二、计算题1. 从1, 2, 3, 15中,甲、乙两人各任取一数(不重复),已知甲取到的数是5的倍数,求甲数大于乙数的概率. 解.设事件A表示“甲取到的数比乙大”,设事件B表示“甲取到的数是5的倍数”. 则显然所要求的概率为P(A|B).根据公式 而P(B)=3/15=1/5 , , P(A|B)=9/14.2. 掷三颗骰子,已知所得三个数都不一样,求含有1点的概率. 解.设事件A表示“掷出含有1的点数”,设事件B表示“掷出的三个点数都不一样”.则显然所要求的概率为P(A|B).根据公式 , , P(A|B)=1/2.3. 袋中有一个白球和一个黑球,一次次地从袋中摸球,如果取出白球,则除把白球
2、放回外再加进一个白球,直至取出黑球为止,求取了N次都没有取到黑球的概率. 1解.设事件Ai表示“第i次取到白球”. (i=1,2,N)则根据题意P(A1)=1/2 , P(A2|A1)=2/3,由乘法公式可知: P(A1A2)=P(A2|A1)P(A1)=1/3.而 P(A3|A1A2)=3/4 , P(A1A2A3)=P(A3|A1A2)P(A1A2)=1/4 .由数学归纳法可以知道 P(A1A2AN)=1/(N+1).4. 甲袋中有5只白球, 7 只红球;乙袋中有4只白球, 2只红球.从两个袋子中任取一袋, 然后从所取到的袋子中任取一球,求取到的球是白球的概率. 解.设事件A表示“取到的是
3、甲袋”, 则表示“取到的是乙袋”,事件B表示“最后取到的是白球”.根据题意 : P(B|A)=5/12 , , P(A)=1/2. . 5. 有甲、乙两袋,甲袋中有3只白球,2只黑球;乙袋中有4只白球,4只黑球.现从甲袋中任取2个球放入乙袋,然后再从乙袋中任取一球,求此球为白球的概率. 解.设事件Ai表示“从甲袋取的2个球中有i个白球”,其中i=0,1,2 . 事件B表示“从乙袋中取到的是白球”. 显然A0, A1, A2构成一完备事件组,且根据题意 P(A0)=1/10 , P(A1)=3/5 , P(A2)=3/10 ; P(B|A0)=2/5 , P(B|A1)=1/2 , P(B|A2
4、)=3/5 ;由全概率公式P(B)=P(B|A0)P(A0)+P(B|A1)P(A1)+P(B|A2)P(A2)=2/51/10+1/23/5+3/53/10=13/25.6. 袋中装有编号为1, 2, N的N个球,先从袋中任取一球,如该球不是1号球就放回袋中,是1号球就不放回,然后再摸一次,求取到2号球的概率. 解.设事件A表示“第一次取到的是1号球”,则 表示“第一次取到的是非1号球”;事件B表示“最后取到的是2号球”.显然 P(A)=1/N, , 且 P(B|A)=1/(N-1), ; =1/(N-1)1/N+1/N(N-1)/N=(N2-N+1)/N2(N-1).7. 袋中装有8只红球
5、 , 2只黑球,每次从中任取一球, 不放回地连续取两次, 求下列事件的概率.(1)取出的两只球都是红球; (2)取出的两只球都是黑球; (3)取出的两只球一只是红球,一只是黑球; (4)第二次取出的是红球. 解.设事件A1表示“第一次取到的是红球”,设事件A2表示“第二次取到的是红球”.(1)要求的是事件A1A2的概率.根据题意 P(A1)=4/5, , P(A2|A1)=7/9, P(A1A2)=P(A1)P(A2|A1)=4/57/9=28/45. (2)要求的是事件的概率. 根据题意: , , . (3)要求的是取出一只红球一只黑球,它包括两种情形,即求事件 的概率. , , , , .
6、 (4)要求第二次取出红球,即求事件A2的概率. 由全概率公式 : =7/94/5+8/91/5=4/5. 8. 某射击小组共有20名射手,其中一级射手4人, 二级射手8人, 三级射手7人, 四级射手1人. 一、二、三、四级射手能通过选拔进入比赛的概率分别是0.9、0.7、0.5、0.2 . 求任选一名射手能通过选拔进入比赛的概率. 解.设事件A表示“射手能通过选拔进入比赛”,设事件Bi表示“射手是第i级射手”.(i=1,2,3,4) 显然, B1、B2、B3、B4构成一完备事件组,且 P(B1)=4/20, P(B2)=8/20, P(B3)=7/20, P(B4)=1/20; P(A|B1
7、)=0.9, P(A|B2)=0.7, P(A|B3)=0.5, P(A|B4)=0.2. 由全概率公式得到 P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+P(A|B3)P(B3)+P(A|B4)P(B4)=0.94/20+0.78/20+0.57/20+0.21/20=0.645.9. 轰炸机轰炸某目标,它能飞到距目标400、200、100(米)的概率分别是0.5、0.3、0.2,又设它在距目标400、200、100(米)时的命中率分别是0.01、0.02、0.1 .求目标被命中的概率为多少? 解.设事件A1表示“飞机能飞到距目标400米处”,设事件A2表示“飞机能飞到距目标
8、200米处”,设事件A3表示“飞机能飞到距目标100米处”,用事件B表示“目标被击中”.由题意, P(A1)=0.5, P(A2)=0.3, P(A3)=0.2, 且A1、A2、A3构成一完备事件组. 又已知 P(B|A1)=0.01, P(B|A2)=0.02, P(B|A3)=0.1. 由全概率公式得到 : P(B)=P(B|A1)P(A1)+P(B|A2)P(A2)+P(B|A3)P(A3)=0.010.5+0.020.3+0.10.2=0.031. 10. 加工某一零件共需要4道工序,设第一第二第三第四道工序的次品率分别为2%3%5%3%, 假定各道工序的加工互不影响, 求加工出零件的
9、次品率是多少? 解.设事件Ai表示“第i道工序出次品”, i=1,2,3,4 因为各道工序的加工互不影响,因此Ai是相互独立的事件. P(A1)=0.02, P(A2)=0.03, P(A3)=0.05, P(A4)=0.03, 只要任一道工序出次品,则加工出来的零件就是次品.所以要求的是(A1+A2+A3+A4)这个事件的概率. 为了运算简便,我们求其对立事件的概率 =(1-0.02)(1-0.03)(1-0.05)(1-0.03)=0.876. P(A1+A2+A3+A4)=1-0.876=0.124. 11. 某人过去射击的成绩是每射5次总有4次命中目标, 根据这一成绩, 求 (1)射击
10、三次皆中目标的概率; (2)射击三次有且只有2次命中目标的概率; (3)射击三次至少有二次命中目标的概率. 解.设事件Ai表示“第i次命中目标”, i=1,2,3 根据已知条件 P(Ai)=0.8, ,i=1,2,3 某人每次射击是否命中目标是相互独立的,因此事件Ai是相互独立的 . (1)射击三次皆中目标的概率即求P(A1A2A3). 由独立性: P(A1A2A3)=P(A1)P(A2)P(A3)=0.83=0.512. (2)“射击三次有且只有2次命中目标”这个事件用B表示. 显然 ,又根据独立性得到: . (3)“射击三次至少有2次命中目标”这个事件用C表示. 至少有2次命中目标包括2次
11、和3次命中目标,所以C=B+A1A2A3 P(C)=P(B)+P(A1A2A3)=0.384+0.512=0.896. 12. 三人独立译某一密码, 他们能译出的概率分别为1/3, 1/4, 1/5, 求能将密码译出的概率. 解.设事件Ai表示“第i人能译出密码”, i=1,2,3. 由于每一人是否能译出密码是相互独立的,最后只要三人中至少有一人能将密码译出,则密码被译出,因此所求的概率为P(A1+A2+A3). 已知P(A1)=1/3, P(A2)=1/4, P(A3)=1/5, 而 =(1-1/3)(1-1/4)(1-1/5)=0.4. P(A1+A2+A3)=1-0.4=0.6. 13.
12、 用一门大炮对某目标进行三次独立射击, 第一、二、三次的命中率分别为0.4、0.5、0.7, 若命中此目标一、二、三弹, 该目标被摧毁的概率分别为0.2、0.6和0.8, 试求此目标被摧毁的概率. 解.设事件Ai表示“第i次命中目标”, i=1,2,3. 设事件Bi表示“目标被命中i弹”, i=0,1,2,3. 设事件C表示“目标被摧毁”. 由已知P (A1)=0.4, P(A2)=0.5, P(A3)=0.7; P(C|B0)=0, P(C|B1)=0.2, P(C|B2)=0.6, P(C|B3)=0.8. 又由于三次射击是相互独立的,所以, =0.60.50.7+0.60.50.3+0.
13、40.50.3=0.36, =0.60.50.7+0.40.50.3+0.40.50.7=0.41, . 由全概率公式得到 P(C)=P(C|B0)P(B0)+P(C|B1)P(B1)+P(C|B2)P(B2)+P(C|B3)P(B3)=00.09+0.20.36+0.60.41+0.80.14=0.43.仅供个人用于学习、研究;不得用于商业用途。For personal use only in study and research; not for commercial use.Nur fr den persnlichen fr Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l tude et la recherche uniquement des fins personnelles; pas des fins commerciales. , , . 以下无正文