《初中数学二次函数易错题汇编及答案.doc》由会员分享,可在线阅读,更多相关《初中数学二次函数易错题汇编及答案.doc(17页珍藏版)》请在三一办公上搜索。
1、最新初中数学二次函数易错题汇编及答案一、选择题1如图是二次函数的图象,有下面四个结论:;,其中正确的结论是 ABCD【答案】D【解析】【分析】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.【详解】根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故正确.时,由图像可知此时,即,故正确.由对称轴,可得,所以错误,故错误;当时,由图像可知此时,即,将中变形为,代入可得,故正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解
2、决问题。2抛物线yx2+bx+3的对称轴为直线x1若关于x的一元二次方程x2+bx+3t0(t为实数)在2x3的范围内有实数根,则t的取值范围是()A12t3B12t4C12t4D12t3【答案】C【解析】【分析】根据给出的对称轴求出函数解析式为yx22x3,将一元二次方程x2bx3t0的实数根看做是yx22x3与函数yt的交点,再由2x3确定y的取值范围即可求解.【详解】解:yx2bx3的对称轴为直线x1,b2,yx22x3,一元二次方程x2bx3t0的实数根可以看做是yx22x3与函数yt的交点,当x1时,y4;当x3时,y12,函数yx22x3在2x3的范围内12y4,12t4,故选:C
3、【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键3对于二次函数,下列说法正确的个数是()对于任何满足条件的,该二次函数的图象都经过点和两点;若该函数图象的对称轴为直线,则必有;当时,随的增大而增大;若,是函数图象上的两点,如果总成立,则A1个B2个C3个D4个【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可【详解】对于当时,则二次函数的图象都经过点当时,则二次函数的图象都经过点则说法正确此二次函数的对称轴为,则说法错误由二次函数的性质可知,抛物线的开口向下,当时,y随x的增大而增大;当时,y随x的增大而减小因则
4、当时,y随x的增大而增大;当时,y随x的增大而减小即说法错误由总成立得,其对称轴解得,则说法正确综上,说法正确的个数是2个故选:B【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键4已知二次函数yax2+bx+c(a0)的图象如图所示,则下列结论:(1)4a+2b+c0;(2)方程ax2+bx+c0两根都大于零;(3)y随x的增大而增大;(4)一次函数yx+bc的图象一定不过第二象限其中正确的个数是()A1个B2个C3个D4个【答案】C【解析】【分析】由图可知,x=2时函数值小于0,故(1)正确,函数与x轴的交点为x=1.x=3,都大于0,故(2)
5、正确 ,由图像知(3)错误,由图象开口向上,a0,与y轴交于正半轴,c0,对称轴x=1,故b0,bc0,即可判断一次函数yx+bc的图象.【详解】由x2时,y4a+2b+c,由图象知:y4a+2b+c0,故正确;方程ax2+bx+c0两根分别为1,3,都大于0,故正确;当x2时,由图象知:y随x的增大而减小,故错误;由图象开口向上,a0,与y轴交于正半轴,c0,x=10,b0,bc0,一次函数yx+bc的图象一定过第一、三、四象限,故正确;故正确的共有3个,故选:C【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.5抛物线y1=ax2+bx+c与直线y2=mx+n的图象如
6、图所示,下列判断中:abc0;a+b+c0;5a-c=0;当x或x6时,y1y2,其中正确的个数有() A1B2C3D4【答案】C【解析】【分析】【详解】解:根据函数的开口方向、对称轴以及函数与y轴的交点可知:a0,b0,c0,则abc0,则正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则错误;根据函数对称轴可得:-=3,则b=-6a,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则正确;根据函数的交点以及函数图像的位置可得正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a大于零,如果函数开口向下,则a小于零;
7、如果函数的对称轴在y轴左边,则b的符号与a相同,如果函数的对称轴在y轴右边,则b的符号与a相反;如果函数与x轴交于正半轴,则c大于零,如果函数与x轴交于负半轴,则c小于零;对于出现a+b+c、a-b+c、4a+2b+c、4a-2b+c等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.6若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”例如:P(1,0)、Q(2,2)都是“整点”抛物线ymx24mx+4m2(m0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有
8、七个整点,则m的取值范围是()Am1Bm1C1m2D1m2【答案】B【解析】【分析】画出图象,利用图象可得m的取值范围【详解】ymx24mx+4m2m(x2)22且m0,该抛物线开口向上,顶点坐标为(2,2),对称轴是直线x2由此可知点(2,0)、点(2,1)、顶点(2,2)符合题意当该抛物线经过点(1,1)和(3,1)时(如答案图1),这两个点符合题意将(1,1)代入ymx24mx+4m2得到1m4m+4m2解得m1此时抛物线解析式为yx24x+2由y0得x24x+20解得 x轴上的点(1,0)、(2,0)、(3,0)符合题意则当m1时,恰好有 (1,0)、(2,0)、(3,0)、(1,1)
9、、(3,1)、(2,1)、(2,2)这7个整点符合题意m1【注:m的值越大,抛物线的开口越小,m的值越小,抛物线的开口越大】答案图1(m1时) 答案图2( m时)当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意此时x轴上的点 (1,0)、(2,0)、(3,0)也符合题意将(0,0)代入ymx24mx+4m2得到004m+02解得m此时抛物线解析式为yx22x当x1时,得点(1,1)符合题意当x3时,得.点(3,1)符合题意综上可知:当m时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,1)、(3,1)、(2,2)、(2,1)都符合题意,共有9个整
10、点符合题意,m不符合题m综合可得:当m1时,该函数的图象与x轴所围成的区域(含边界)内有七个整点,故选:B【点睛】考查二次函数图象与系数的关系,抛物线与x轴的交点,画出图象,数形结合是解题的关键.7一列自然数0,1,2,3,100依次将该列数中的每一个数平方后除以100,得到一列新数则下列结论正确的是()A原数与对应新数的差不可能等于零B原数与对应新数的差,随着原数的增大而增大C当原数与对应新数的差等于21时,原数等于30D当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解【详解】解:设原数为m,则新数为 ,设新数与原数的差为y则
11、, 易得,当m0时,y0,则A错误 当 时,y有最大值则B错误,D正确当y21时,21解得30,70,则C错误故答案选:D【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号8足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567h08141820201814下列结论:足球距离地面的最大高度为20m;足球飞行路线的对称轴是直线;足球被踢出9s时落地;足球被踢出1.5s时,距离地面的高度是11m. 其中
12、正确结论的个数是( )A1B2C3D4【答案】B【解析】【分析】【详解】解:由题意,抛物线的解析式为y=ax(x9),把(1,8)代入可得a=1,y=t2+9t=(t4.5)2+20.25,足球距离地面的最大高度为20.25m,故错误,抛物线的对称轴t=4.5,故正确,t=9时,y=0,足球被踢出9s时落地,故正确,t=1.5时,y=11.25,故错误,正确的有,故选B9函数在同一直角坐标系内的图象大致是()ABCD【答案】C【解析】【分析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除【详解】当a0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二
13、、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=-0,且a0,则b0,但B中,一次函数a0,b0,排除B故选C10已知在平面直角坐标系中,有两个二次函数及图象,将二次函数的图象按下列哪一种平移方式平移后,会使得此两个函数图象的对称轴重叠( )A向左平移2个单位长度B向右平移2个单位长度C向左平移10个单位长度D向右平移10个单位长度【答案】D【解析】【分析】将二次函数解析式展开,结合二次函数的性质找出两二次函数的对称轴,二者做差后即可得出平移方向及距离【详解】解:ym(x3)(x9)mx212mx27m,yn(x2)(x6)nx28nx12n,二次函数ym(x3)
14、(x9)的对称轴为直线x6,二次函数yn(x2)(x6)的对称轴为直线x4,4(6)10,将二次函数ym(x3)(x9)的图形向右平移10个单位长度,两图象的对称轴重叠故选:D【点睛】本题考查了二次函数图象与几何变换以及二次函数的性质,根据二次函数的性质找出两个二次函数的对称轴是解题的关键11某二次函数图象的顶点为,与轴交于、两点,且若此函数图象通过、四点,则、之值何者为正?( )ABCD【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x轴的交点坐标,从而可以判断a、b、c、d的正负,本题得以解决【详解】二次函数图象的顶点坐标为(2,-1),此函数图象与x轴相交于P、Q两
15、点,且PQ=6,该函数图象开口向上,对称轴为直线x=2,图形与x轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),此函数图象通过(1,a)、(3,b)、(-1,c)、(-3,d)四点,a0,b0,c=0,d0,故选:D【点睛】此题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答12如图是二次函数的图象,其对称轴为.下列结论:;若是抛物线上两点,则.其中正确的结论有( )A1个B2个C3个D4个【答案】B【解析】【分析】由抛物线开口方向得到a0,根据对称轴得到b=-2a0,由抛物线与y轴的交点位置得到c0,则可对
16、进行判断;由b=-2a可对进行判断;利用抛物线的对称性可得到抛物线与x轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对进行判断;通过二次函数的增减性可对进行判断【详解】解:抛物线开口向下,a0,抛物线的对称轴为直线 ,b=-2a0,抛物线与y轴的交点在x轴上方,c0,abc0,所以错误;b=-2a,2a+b=0,所以正确;抛物线与x轴的一个交点为(-1,0),抛物线的对称轴为直线x=1,抛物线与x轴的另一个交点为(3,0),当x=3时,y=0,所以错误;抛物线的对称轴为直线x=1,且抛物线开口向下,当x时,y随x的增大而增大点 到对称轴的距离比点 对称轴的距离近,y1y2,所以
17、正确故选B【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右;常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由决定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点13二次函数y=ax2+bx+c(a0)的图象如图,给出下
18、列四个结论:4acb20;4a+c2b;3b+2c0;m(am+b)+ba(m1),其中正确结论的个数是( )A4个B3个C2个D1个【答案】B【解析】【分析】【详解】解:抛物线和x轴有两个交点,b24ac0,4acb20,正确;对称轴是直线x1,和x轴的一个交点在点(0,0)和点(1,0)之间,抛物线和x轴的另一个交点在(3,0)和(2,0)之间,把(2,0)代入抛物线得:y=4a2b+c0,4a+c2b,错误;把(1,0)代入抛物线得:y=a+b+c0,2a+2b+2c0,b=2a,3b,2c0,正确;抛物线的对称轴是直线x=1,y=ab+c的值最大,即把(m,0)(m0)代入得:y=am
19、2+bm+cab+c,am2+bm+ba,即m(am+b)+ba,正确;即正确的有3个,故选B考点:二次函数图象与系数的关系14如图,四边形ABCD是正方形,AC、BD交于点O,点P、Q分别是AB、BD上的动点,点P的运动路径是,点Q的运动路径是BD,两点的运动速度相同并且同时结束.若点P的行程为x,的面积为y,则y关于x的函数图象大致为( )ABCD【答案】A【解析】【分析】分点P在AB边和BC边上两种情况画出图形,分别求出y关于x的函数关系式,再结合其取值范围和图象的性质判断即可.【详解】解:当点P在AB边上,即时,如图1,由题意得:AP=BQ=x,ABD=45, BP=8x,过点Q作QF
20、AB于点F,则QF=,则,此段抛物线的开口向下; 当点P在BC边上,即时,如图2,由题意得:BQ=x,BP=x8,CBD=45,过点Q作QEBC于点E,则QE=,则,此段抛物线的开口向上.故选A.【点睛】本题以正方形为依托,考查了动点问题的函数图象、正方形的性质、等腰直角三角形的性质和二次函数的图象等知识,分情况讨论、正确列出二次函数的关系式是解题的关键.15抛物线y=x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x21012y04664从上表可知,下列说法错误的是A抛物线与x轴的一个交点坐标为(2,0)B抛物线与y轴的交点坐标为(0,6)C抛物线的对称轴是直线x=0D抛物线在
21、对称轴左侧部分是上升的【答案】C【解析】【分析】【详解】解:当x=-2时,y=0,抛物线过(-2,0),抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,对称轴为x=,故C错误;当x时,y随x的增大而增大,抛物线在对称轴左侧部分是上升的,故D正确;故选C16已知二次函数 (为常数),当自变量的值满足时,与其对应的函数值的最大值为-1,则的值为( )A3或6B1或6C1或3D4或6【答案】B【解析】分析:分h2、2h5和h5三种情况考虑:当h2时,根据二次函数的性质可得出关于h的一元二次方程,解之即可
22、得出结论;当2h5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h5时,根据二次函数的性质可得出关于h的一元二次方程,解之即可得出结论综上即可得出结论详解:如图,当h2时,有-(2-h)2=-1, 解得:h1=1,h2=3(舍去);当2h5时,y=-(x-h)2的最大值为0,不符合题意;当h5时,有-(5-h)2=-1,解得:h3=4(舍去),h4=6综上所述:h的值为1或6故选B点睛:本题考查了二次函数的最值以及二次函数的性质,分h2、2h5和h5三种情况求出h值是解题的关键17下列函数(1)y=x (2)y=2x1 (3)y= (4)y=23x (5)y=x21中,是一次函数
23、的有()A4个B3个C2个D1个【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可【详解】解:(1)y=x是一次函数,符合题意;(2)y=2x1是一次函数,符合题意;(3)y= 是反比例函数,不符合题意;(4)y=23x是一次函数,符合题意;(5)y=x21是二次函数,不符合题意;故是一次函数的有3个故选:B【点睛】此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键18已知二次函数ya(xh)2+k的图象如图所示,直线yax+hk的图象经第几象限()A一、二、三B一、二、四C一、三、四D二、三、四【答案】D【解析】【分析】根据二次函数的图象
24、和性质可得a0,h0,k0,以此判断一次函数的图象所经过的象限即可【详解】解:由函数图象可知,ya(xh)2+k中的a0,h0,k0,直线yax+hk中的a0,hk0,直线yax+hk经过第二、三、四象限,故选:D【点睛】本题考查了一次函数的图象的问题,掌握二次函数、一次函数的图象和性质是解题的关键19如图抛物线交轴于和点,交轴负半轴于点,且.有下列结论:;.其中,正确结论的个数是( )ABCD【答案】C【解析】【分析】根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a、b、c的符号以及它们之间的数量关系,即可得出结论【详解】解:根据图象可知a0,c0,b0,, 故错误;.
25、B(-c,0)抛物线y=ax2+bx+c与x轴交于A(-2,0)和B(-c,0)两点, , ac2-bc+c=0 ,ac-b+1=0,故正确;,b=ac+1,2b-c=2,故正确;故选:C【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0),二次项系数a决定抛物线的开口方向和大小:当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数
26、由决定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点20在同一坐标系中,二次函数与一次函数的图像可能是( )ABCD【答案】C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数
27、项为负,交y轴于负半轴如此分析下来,二次函数与一次函数无矛盾者为正确答案【详解】解:由方程组得ax2a,a0x21,该方程无实数根,故二次函数与一次函数图象无交点,排除BA:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;但是一次函数b为一次项系数,图象显示从左向右上升,b0,两者矛盾,故A错;C:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;b为一次函数的一次项系数,图象显示从左向右下降,b0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错故选C【点睛】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上