《圆锥曲线大题归类.doc》由会员分享,可在线阅读,更多相关《圆锥曲线大题归类.doc(15页珍藏版)》请在三一办公上搜索。
1、圆锥曲线大题归类一 定点问题例1.已知椭圆C:y21(a1)的上顶点为A,右焦点为F,直线AF与圆M:(x3)2(y1)23相切(1)求椭圆C的方程;(2)若不过点A的动直线l与椭圆C交于P,Q两点,且0,求证:直线l过定点,并求该定点的坐标解析(1)圆M的圆心为(3,1),半径r.由题意知A(0,1),F(c,0),直线AF的方程为y1,即xcyc0,由直线AF与圆M相切,得,解得c22,a2c213,故椭圆C的方程为y21.(2)方法一:由0知APAQ,从而直线AP与坐标轴不垂直,故可设直线AP的方程为ykx1,直线AQ的方程为yx1.联立整理得(13k2)x26kx0,解得x0或x,故点
2、P的坐标为(,),同理,点Q的坐标为(,)直线l的斜率为,直线l的方程为y(x),即yx.直线l过定点(0,)方法二:由0知APAQ,从而直线PQ与x轴不垂直,故可设直线l的方程为ykxt(t1),联立整理得(13k2)x26ktx3(t21)0.设P(x1,y1),Q(x2,y2)则(*)由(6kt)24(13k2)3(t21)0,得3k2t21.由0,得(x1,y11)(x2,y21)(1k2)x1x2k(t1)(x1x2)(t1)20,将(*)代入,得t,直线l过定点(0,)例2.已知抛物线C:y22px(p0)的焦点F(1,0),O为坐标原点,A,B是抛物线C上异于O的两点.(1)求抛
3、物线C的方程;(2)若直线OA,OB的斜率之积为,求证:直线AB过x轴上一定点解析(1)因为抛物线y22px(p0)的焦点坐标为(1,0),所以1,所以p2.所以抛物线C的方程为y24x.(2)证明:当直线AB的斜率不存在时,设A(,t),B(,t)因为直线OA,OB的斜率之积为,所以,化简得t232.所以A(8,t),B(8,t),此时直线AB的方程为x8.当直线AB的斜率存在时,设其方程为ykxb,A(xA,yA),B(xB,yB),联立得化简得ky24y4b0.根据根与系数的关系得yAyB,因为直线OA,OB的斜率之积为,所以,即xAxB2yAyB0.即2yAyB0,解得yAyB0(舍去
4、)或yAyB32.所以yAyB32,即b8k,所以ykx8k,yk(x8)综上所述,直线AB过定点(8,0)圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关二定值问题例3.已知椭圆C:1(ab0)的两个焦点分别为F1(,0),F2(,0),点M(1,0)与椭圆短轴的两个端点的连线互相垂直.(1)求椭圆C的方程;(2)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN的斜率分别为k1,k2,求证:k1k
5、2定值解析(1)依题意,由已知得c,则a2b22,由已知易得b|OM|1,所以a,所以椭圆的方程为y21.(2)当直线l的斜率不存在时,不妨设A(1,),B(1,),则k1k22为定值当直线l的斜率存在时,设直线l的方程为yk(x1),由得(3k21)x26k2x3k230,依题意知,直线l与椭圆C必相交于两点,设A(x1,y1),B(x2,y2),则x1x2,x1x2,又y1k(x11),y2k(x21),所以k1k22,综上,得k1k2为定值2.例4 (2016北京理科)求定值问题常见的方法(1)从特殊入手,求出定值,再证明这个值与变量无关(2)直接推理、计算,并在计算推理的过程中消去变量
6、,从而得到定值三探索性问题例5.(2015新课标全国,12分,理)已知椭圆C:9x2y2m2(m0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由解析(1)设直线l:ykxb(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM)将ykxb代入9x2y2m2得(k29)x22kbxb2m20,故xM,yMkxMb.于是直线OM的斜率kOM,即kOMk9.所以直线OM的斜率与l的斜率
7、的乘积为定值(2)四边形OAPB能为平行四边形因为直线l过点(,m),所以l不过原点且与C有两个交点的充要条件是k0,k3.由(1)得OM的方程为yx.设点P的横坐标为xP.由得x,即xP.将点(,m)的坐标代入l的方程得b,因此xM.四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即xP2xM.于是2,解得k14,k24.因为ki0,ki3,i1,2,所以当l的斜率为4或4时,四边形OAPB为平行四边形例6.已知椭圆C:1(ab0)的右焦点为F(1,0),右顶点为A,且|AF|1.(1)求椭圆C的标准方程;(2)若动直线l:ykxm与椭圆C有且只有一个交点P,且与直线x4交于点
8、Q,问:是否存在一个定点M(t,0),使得0.若存在,求出点M的坐标;若不存在,说明理由解析(1)由c1,ac1,得a2,b,故椭圆C的标准方程为1.(2)由消去y得(34k2)x28kmx4m2120,64k2m24(34k2)(4m212)0,即m234k2.yPkxPmm,即P(,)M(t,0),Q(4,4km),(t,),(4t,4km),(t)(4t)(4km)t24t3(t1)0恒成立,故即t1.存在点M(1,0)符合题意设P(xP,yP),则xP,yPkxPmm,即P(,)M(t,0),Q(4,4km),(t,),(4t,4km),(t)(4t)(4km)t24t3(t1)0恒成
9、立,故即t1.存在点M(1,0)符合题意四、 取值范围问题例7.(2015浙江,15分)已知椭圆y21上两个不同的点A,B关于直线ymx对称.(1)求实数m的取值范围;(2)求AOB面积的最大值(O为坐标原点)解析(1)由题意知m0,可设直线AB的方程为yxb.由消去y,得()x2xb210.因为直线yxb与椭圆y21有两个不同的交点,所以2b220,设M为AB的中点,则M(,),代入直线方程ymx,解得b.由得m.(2)令t(,0)(0,),则且O到直线AB的距离d.设AOB的面积为S(t),所以S(t)|AB|d,当且仅当t2时,等号成立故AOB面积的最大值为.|AB|,例8.已知圆x2y
10、21过椭圆1(ab0)的两焦点,与椭圆有且仅有两个公共点,直线l:ykxm与圆x2y21相切,与椭圆1相交于A,B两点记,且.(1)求椭圆的方程;(2)求k的取值范围;(3)求OAB的面积S的取值范围解:(1)由题意知2c2,所以c1.因为圆与椭圆有且只有两个公共点,从而b1,故a,所以所求椭圆方程为y21.(2)因为直线l:ykxm与圆x2y21相切,所以原点O到直线l的距离为1,即m2k21.由得(12k2)x24kmx2m220.设A(x1,y1),B(x2,y2),则x1x2,x1x2.x1x2y1y2(1k2)x1x2km(x1x2)m2,由,得k21,即k的取值范围是.(3)|AB
11、|2(x1x2)2(y1y2)2(1k2)(x1x2)24x1x22,由k21,得|AB|.设OAB的AB边上的高为d,则S|AB|d|AB|,所以S.即OAB的面积S的取值范围是.例9.已知椭圆E:1的焦点在x轴上,A是E的左顶点,斜率为k(k0)的直线交E于A,M两点,点N在E上,MANA.(1)当t4,|AM|AN|时,求AMN的面积;(2)当2|AM|AN|时,求k的取值范围【解】(1)设M(x1,y1),则由题意知y10.当t4时,E的方程为1,A(2,0)由已知及椭圆的对称性知,直线AM的倾斜角为.因此直线AM的方程为yx2.将xy2代入1得7y212y0.解得y0或y,所以y1.
12、因此AMN的面积SAMN2.(2)由题意知t3,k0,A(,0)将直线AM的方程yk(x)代入1得(3tk2)x22tk2xt2k23t0.由x1()得x1,故|AM|x1|.由题设知,直线AN的方程为y(x),故同理可得|AN|.由2|AM|AN|得,即(k32)t3k(2k1)当k时上式不成立,因此t. t3等价于0,即0.由此得或解得kb0)的离心率为,左、右焦点分别是F1,F2.以F1为圆心、以3为半径的圆与以F2为圆心、以1为半径的圆相交,且交点在椭圆C上(1)求椭圆C的方程;(2)设椭圆E:1,P为椭圆C上任意一点,过点P的直线ykxm交椭圆E于A,B两点,射线PO交椭圆E于点Q.
13、求的值;求ABQ面积的最大值解】(1)由题意知2a4,则a2.又,a2c2b2,可得b1,(2)由(1)知椭圆E的方程为1.设P(x0,y0),由题意知Q(x0,y0)因为y1,又1,即1,所以2,即2.所以椭圆C的方程为y21.设A(x1,y1),B(x2,y2)将ykxm代入椭圆E的方程,可得(14k2)x28kmx4m2160,由0,可得m2416k2.则有x1x2,x1x2.所以|x1x2|.因为直线ykxm与y轴交点的坐标为(0,m),所以OAB的面积S|m|x1x2|2.设t.将ykxm代入椭圆C的方程,可得(14k2)x28kmx4m240,由0,可得m214k2.由可知0|FM|,点N的轨迹E为椭圆,且2a4,c,b1,轨迹E的方程为y21.a.当AB为长轴(或短轴)时,SABC|OC|AB|2.b当直线AB的斜率存在且不为0时,设直线AB的方程为ykx,A(xA,yA),联立方程得,x,y,|OA|2xy.将上式中的k替换为,可得|OC|2.SABC2SAOC|OA|OC|.,SABC,当且仅当14k2k24,即k1时等号成立,此时ABC面积的最小值是.2,ABC面积的最小值是,此时直线AB的方程为yx或yx.