《某轧机直流电动机晶闸管调速系统设计.doc》由会员分享,可在线阅读,更多相关《某轧机直流电动机晶闸管调速系统设计.doc(57页珍藏版)》请在三一办公上搜索。
1、某轧机直流电动机晶闸管调速系统设计目录摘要4第一章 绪 论5第二章 直流调速系统的方案确定62.1系统的技术数据要求62.2直流调速系统的方案选择72.3 双闭环直流调速系统的静特性10第三章 主电路的设计与分析113.1主电路结构设计113.2 整流电路163.3 励磁回路的选择173.4 晶闸管的触发电路193.5 KJ004的工作原理213.6 脉冲变压器的设计23第四章 PWM控制直流调速系统控制电路设计254.1 PWM信号发生器254.2 SG3525引脚各端子功能27第五章 主电路元部件及参数计算325.1 整流变压器容量计算325.2 IGBT管的参数335.3 三相全控桥整流
2、二极管选择345.4 滤波电容C1的选择34第六章 主电路保护电路设计346.1 IGBT的保护设计346.2 主电路过电流保护电路366.3过电压保护设计366.4过电流保护设计396.5斩波器的散热设计41第七章 励磁回路元件计算和选择42 7.1 变压器的选择427.2 整流元件晶闸管的选型46 第八章 双闭环调速系统调节器的设计478.1 电流调节器的设计478.2转速调节器的设计51心得体会57参考文献58摘 要直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到应用。晶闸管问世后,生产出成套的晶闸管整流装置,组成晶闸管电动机调速系
3、统(简称V-M系统),和旋转变流机组及离子拖动变流装置相比,晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。本文首先明确了设计的任务和要求,在了解了转速电流双闭环直流调速系统的调速原理后依次对晶闸管相控整流调速系统的主电路,保护电路,检测电路和触发电路进行了设计,并且计算了相关参数。目前,市场上用的最多的IGBT直流斩波器,它是属于全控型斩波器,它的主导器件采用国际上先进的电力电子器件IGBT,由门极电压控制,从根本上克服了晶闸管斩波器及GTR 斩波器的缺点。该斩波器既能为煤矿窄轨电机车配套的调速装置,针对不同的负载对象,做一些少量的改动又可用于其它要求
4、供 电电压可调的直流负载上。与可控硅脉冲调速方式和电阻调速方式相比,具有明显的优点。关键字:双闭环控制 单项全控桥 三相桥式 IGBT第一章 绪 论 许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求具有良好的稳态,动态性能。而直流电调速系统调速范围广,静差率小,稳定性好以及具有良好的动态性能,在高性能的拖动技术领域中,相当长期内几乎都采用直流电力拖动系统。双闭环直流调速系统是直流调速控制系统中发展得最为成熟,应用非常广泛的电力系统传动系统。它具有动态响应快,抗干扰能力强等特点。我们知道反馈闭环控制系统具有良好的抗干扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。采
5、用转速反馈和PI调节器的单闭环的调速系统可以在保证系统稳定的条件下实现转速无静差,但如果对系统的动态性能要求较高,例如要起制动,突加负载动态性能速降小等等,单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照要求来控制动态过程的电流或转矩。在单闭环系统中,只有电流截止至负反馈环节是专门用来控制电流的。但它只在超过临界电流值以后强烈的复返快作用限制电流的冲击,并不能很理想的控制电流的动态波形。在实际工作中,我们希望在电机最大电流的限制条件下,充分利用电机的允许过载能力。最好是在过渡过程中始终保持电流(转矩)为允许最大值,使电力拖动系统尽可能用最大的加速度起动,到达稳定转速后又让电流立
6、即降下来,使转矩马上与负载相平衡,从而转入稳定运行。这是,起动电流成方波形,而转速是线性增长的。这是在最大电流转矩的条件下调速系统所能的得到的最快起动过程。 随着社会化大生产的不断发展,交流调速系统发展很快,然而直流拖动系统无论在理论上和时间上都比较成熟,并且从闭环控制的角度来看,它有是交流拖动系统的基础。所以直流调速系统在生活中有举足轻重的作用。另一方面,需要指出的是电气传动与自动控制有着密切的关系,调速传动的控制装置主要是各种电力电子变流器,它为电动机提供可控的直流电流,并成为弱点控制强电的媒介。本设计报告首先根据设计要求确定调速方案和主电路的结构形式。主电路和闭环系统确定下来后,重在对电
7、路及各元件参数的计算和器件的选型,包括整流变压器,整流元件,保护电路以及电流转速调节器的参数计算。第二章 直流调速系统的方案确定2.1系统的技术数据要求 采用转速、电流负反馈构成双闭环调速系统主回路采用三相全控桥不可逆系统。励磁回路采用三相桥式晶闸管变流装置供电,构成励磁电流闭环系统控制。技术数据:(1) 直流电动机数据:电动机型号:Z2-62, 220V,69.5A,1500rpm,允许过载倍数,电枢回路电阻,系统运动部分的转动惯量。(2) 要求达到的性能指标:,电流超调量,转速无静差,且空载起动到额定转速时的转速超调量。2.2直流调速系统的方案选择 2.2.1直流调速系统简介 直流电机由定
8、子和转子两部分组成,其间有一定的气隙。其构造的主要特点是具有一个带换向器的电枢。直流电机的定子由机座、主磁极、换向磁极、前后端盖和刷架等部件组成。其中主磁极是产生直流电机气隙磁场的主要部件,由永磁体或带有直流励磁绕组的叠片铁心构成。直流电机的转子则由电枢、换向器(又称整流子)和转轴等部件构成。其中电枢由电枢铁心和电枢绕组两部分组成。电枢铁心由硅钢片叠成,在其外圆处均匀分布着齿槽,电枢绕组则嵌置于这些槽中。换向器是一种机械整流部件。由换向片叠成圆筒形后,以金属夹件或塑料成型为一个整体。各换向片间互相绝缘。换向器质量对运行可靠性有很大影响。 直流电机斩波调速原理是利用可控硅整流调压来达直流电机调速
9、的目的,利用交流电相位延迟一定时间发出触发信号使可控硅导通即为斩波,斩波后的交流电经电机滤波后其平均电压随斩波相位变化而变化。为了达到控制直流电机目的,在控制回路加入了速度、电压、电流反馈环路和PID调节器来防止电机由于负载变化而引起的波动和对电机速度、电压、电流超常保护。 2.2.2调速方案选择 随着电力电子技术的进步,发展了许多新的电枢电压控制方法,其中PWM(脉宽调制)是常用的一种调速方法。其基本原理是用改变电机电枢(定子)电压的接通和断开的时间比(占空比)来控制马达的速度,在脉宽调速系统中,当电机通电时,其速度增加;电机断电时,其速度减低。只要按照一定的规律改变通、断电的时间,即可使电
10、机的速度达到并保持一稳定值。最近几年来,随着微电子技术和计算机技术的发展及单片机的广泛应用,使调速装置向集成化、小型化和智能化方向发展。 2.2.3调速电路方案 本电机调速系统采用脉宽调制方式, 与晶闸管调速相比, 技术先进, 可减少对电源的污染。为使整个系统能正常安全地运行, 设计了过流、过载、过压、欠压保护电路, 另外还有过压吸收电路。确保了系统可靠运行。 2.2.4控制方案选择 直流电动机转速的控制方法可分为励磁控制法与电枢电压控制法两类。随着电力电子技术的进步, 发展了许多新的电枢电压控制方法。如: 由交流电源供电, 使用晶闸管进行相控调压; 使用硅整流器将交流电整流成直流或由蓄电池等
11、直流电源供电, 再由PWM 斩波器进行斩波调压等。PWM 驱动装置与传统晶闸管驱动装置比较, 具有下列优点: 需用的大功率可控器件少, 线路简单; 调速范围宽; 电流波形系数好, 附加损耗小; 功率因数高。可以广泛应用于现代直流电机伺服系统中。本系统是基于PWM 控制的直流电机控制系统。 此设计采用双闭环不可逆直流调速系统,其结构框图如图2.2所示。图2.1 转速、双闭环直流调速系统原理框图2.3 双闭环直流调速系统的静特性双闭环调速系统的静特性在负载电流小于Idm时表现为转速无静差,这时转速负反馈起主要调节作用。当负载电流达到Idm时,对应于转速调节气的饱和输出Uim,这时电流调节器起主要调
12、节作用,系统表现为电流无静差,得到过电流的自动保护。双闭环直流调速系统的静特性如图2.2所示:图2.2 双闭环直流调速系统的静特性2.3双闭环直流调速系统的动态性能对于一个调速系统,电动机要不断处于起动、制动、反转、调速以及突加突减负载的过渡过程,此时,必须研究相关电机运行的动态指标,如稳定性、快速性、动态误差等。这对于提高产品质量和劳动生产率,保证系统安全运行是很有意义的。动态性能指标代表了系统发生过渡过程时的性能,动态指标分跟随指标和抗扰动指标。跟随指标与抗扰指标都表征系统过渡过程的性能,之所以要分别列出,是由于同一个调速系统,其跟随指标和抗扰动指标并不相同,不同的生产机械对这两类指标的要
13、求也是不一样的。此外,当系统过渡过程结束后,稳态误差反映了系统的准确性。一般来说,总是希望最大超调和最大动态速降小一点,振荡次数少一些,调整时将及恢复时间短一点,稳态误差小一点,即希望能达到稳、准、快。事实上,这些指标要求,在同一系统中往往是相互矛盾的,因此需要具体对象所提出的要求,首先满足主要方面的性能指标要求,而适当降低其他方面的指标。直流系统中调速范围D、静差率S、和额定转速之间的关系:在直流电动机变压调速系统中,一般以作为最高转速,若额定转速下的转速降落为,则该系统的静差率应该是最低转速时的静差率,即:则最低转速为:而调速范围为:由上式可见,要求s值要求越小时,系统能够允许的调速范围也
14、越小。第三章 主电路的设计与分析3.1 PWM变换器介绍脉宽调速系统的主要电路采用脉宽调制式变换器,简称PWM变换器。PWM变换器有不可逆和可逆两类,可逆变换器又有双极式、单极式和受限单极式等多种电路。下面分别对各种形式的PWM变换器做一下简单的介绍和分析。不可逆PWM变换器分为无制动作用和有制动作用两种。图3-1(a)所示为无制动作用的简单不可逆PWM变换器主电路原理图,其开关器件采用全控型的电力电子器件。电源电压一般由交流电网经不可控整流电路提供。电容C的作用是滤波,二极管VD在电力晶体管VT关断时为电动机电枢回路提供释放电储能的续流回路。 图3.1 简单的不可逆PWM变换器电路 (a)原
15、理图 (b)电压和电流波形图电力晶体管VT的基极由频率为f,其脉冲宽度可调的脉冲电压驱动。在一个开关周期T内,当Error! No bookmark name given.时,为正,VT饱和导通,电源电压通过VT加到电动机电枢两端;当时,为负,VT截止,电枢失去电源,经二极管VD续流。电动机电枢两端的平均电压为 ,式中,PWM电压的占空比,又称负载电压系数。的变化范围在01之间,改变,即可以实现对电动机转速的调节。 图3-1(b)绘出了稳态时电动机电枢的脉冲端电压、平均电压和电枢电流的波型。由图可见,电流是脉动的,其平均值等于负载电流(负载转矩, 直流电动机在额定磁通下的转矩电流比)。由于VT
16、在一个周期内具有开关两种状态,电路电压平衡方程式也分为两阶段,即在期间, ; 在期间,。式中,R,L电动机电枢回路的总电阻和总电感;E电动机的反电动势。PWM调速系统的开关频率都较高,至少是14kHz,因此电流的脉动幅值不会很大,再影响到转速n和反电动势E的波动就更小,在分析时可以忽略不计,视n和E为恒值。这种简单不可逆PWM电路中电动机的电枢电流不能反向,因此系统没有制动作用,只能做单向限运行,这种电路又称为“受限式”不可逆PWM电路。这种PWM调速系统,空载或轻载下可能出现电流断续现象,系统的静、动态性能均差。 图3.2 具有制动作用的不可逆PWM变换电路图3.2(a)所示为具有制动作用的
17、不可逆PWM变换电路,该电路设置了两个电力晶体管VT1和VT2,形成两者交替开关的电路,提供了反向电流的通路。这种电路组成的PWM调速系统可在第I、II两个象限中运行。VT1和VT2的基极驱动信号电压大小相等,极性相反,即。当电动机工作在电动状态时,在一个周期内平均电流就为正值,电流分为两段变化。在期间,为正,VT1饱和导通;为负,VT2截止。此时,电源电压加到电动机电枢两端,电流沿图中的回路流通。在期间,和改变极性,VT1截止,原方向的电流沿回路2经二极管VD2续流,在VD2两端产生的压降给VT2施加反压,使VT2不可能导通。因此,电动机工作在电动状态时,一般情况下实际上是电力晶体管VT1和
18、续流二极管VD2交替导通,而VT2则始终不导通,其电压、电流波型如图3.2(b)所示,与图2-1没有VT2的情况完全一样。如果电动机在电动运行中要降低转速,可将控制电压减小,使的正脉冲变窄,负脉冲变宽,从而使电动机电枢两端的平均电压降低。但是由于惯性,电动机的转速n和反电动势E来不及立刻变化,因而出现的情况。这时电力晶体管VT2能在电动机制动中起作用。在期间,VT2在正的和反电动势E的作用下饱和导通,由E产生的反向电流沿回路3通过VT2流通,产生能耗制动,一部分能量消耗在回路电阻上,一部分转化为磁场能存储在回路电感中,直到t=T为止。在(也就是)期间,因变负,VT2截止,只能沿回路4经二极管V
19、D1续流,对电源回馈制动,同时在VD1上产生的压降使VT1承受反压而不能导通。在整个制动状态中,VT2和VD1轮流导通,VT1始终截止,此时电动机处于发电状态,电压和电流波型图3-2(c)。反向电流的制动作用使电动机转速下降,直到新的稳态。这种电路构成的调速系统还存在一种特殊情况,即在电动机的轻载电动状态中,负载电流很小,在VT1关断后(即期间)沿回路2径VD2的续流电流很快衰减到零,如在图2-2(d)中的期间的时刻。这时VD2两端的压降也降为零,而此时由于为正,使VT2得以导通,反电动势E经VT2沿回路3流过反向电流,产生局部时间的能耗制动作用。到了期间,VT2关断,又沿回路4经VD1续流,
20、到时衰减到零,VT1在作用下因不存在而反压而导通,电枢电流再次改变方向为沿回路经VT1流通。在一个开关周期内,VT1、VD1、VT2、VD1四个电力电子开关器件轮流导通,其电流波形示图3-2(d)。综上所述,具有制动作用的不可逆PWM变换器构成的调速系统,电动机电枢回路中的电流始终是连续的;而且,由于电流可以反向,系统可以实现二象限运行,有较好的静、动态性能。由具有制动作用的不可逆PWM变换器构成的直流调速系统,电动机有两种过两种状态下电流的方向相反,即在制动状态时为3.2 整流电路 三相桥式不可控整流电路及波形如图3-3所示。三相桥式不可控整流电路可以看为两个三相半波不可控整流电路的组合,其
21、中VD1、VD3、VD5为三个共阴极二极管的三相半波整流电路,负载R两端的电压,三个共阳极的二极管VD4、VD6、VD2的阴极分别接至交流电源A、B、C。它们的共阳极端N至负载电阻R的负端,R2昀正端接交流电源的中点0点。由于电流总是从高电位流向低电位,负载R2和VD4流至A点,负载电压UON-UOA-t/A;在cot6cot8期间,UB最低,电流从O点经负载R2和VD6流至B点,因此,负载上的整流电压为线电压,哪两相的线电压瞬时值最大时,哪两相的二极管就导通,整流电流从相电压瞬时值最高的那一端流出至负载,再回到相电压瞬时值最低的那一相。在一个交流电源周期2n期间,三相桥式不可控整流电路的输出
22、电压波形由六个形状相同的电压波段组成,其输出电压最大值为线电压的幅值,输出的纹波较三相半波不可控整流时要小。其输出电压的平均值为三相半波不可控整流电路输出电压平均值的两倍。 图3.3 三相桥式不可控整流电路及波形3.3 励磁回路的选择本设计励磁电路采用三相桥式晶闸管变流装置供电,构成励磁电流闭环控制。图3.5三相桥式晶闸管变流装置 三相全控桥整流电路实际上是组成三相半波晶闸管整流电路中的共阴极组和共阳极组串联电路。三相全控桥式整流电路可实现对共阴极组和共阳极组同时进行控制,控制角都是在一个周期内6个晶闸管都要被触发一次,触发顺序依次为:。6个触发脉冲相依次相差为了构成一个完整的电流回路,要求两
23、个晶闸管同时导通,其中一个在共阳极组,另一个在共阴极组。为此,晶闸管必须严格俺编号轮流导通,其中晶闸管与按A相,晶闸管与按B相,晶闸管与按C相,晶闸管接成共阳极组和共阴极组。在电路控制下,只有接在电路共阳极组中点位为最高又同时输入触发脉冲的晶闸管,以及接在电路共阴极组中电位最低而同时输入触发脉冲的晶闸管,同时导通时,才构成完整的回路。如图3.5所示。 由于电网电压与工作电压()常常不一致,故在主电路前端需配置一个整流变压器,以得到与负载匹配的电压,同时把晶闸管装置和电网隔离,可以起到降低或减少晶闸管变流装置对电网和电其他设备的干扰。为了使元件免受在突发情况下超过其所承受的电压电流的侵害,电路中
24、加入了过电压,过电流保护装置。3.4 晶闸管的触发电路 晶闸管触发电路的作用是产生符合要求的门极触发脉冲,保证晶闸管在学要的时刻由阻断转为导通。晶闸管触发电路往往包括触发时刻进行控制相位控制电路、触发脉冲的放大和输出环节。触发脉冲的放大和输出环节中,晶闸管触发电路应满足下列要求: (1)触发脉冲的宽度应保证晶闸管可靠导通,三相全控桥式电路应采用宽于60或采用相隔60的双窄脉冲。 (2)触发脉冲应有足够的幅度,对户外寒冷场合,脉冲电流的幅度应增大为器件最大触发电流35倍,脉冲前沿的陡度也需增加,一般需达12Aus。 (3)所提供的触发脉冲应不超过晶闸管门极的电压、电流和功率定额,且在门极的伏安特
25、性的可靠触发区域之内。 (4)应有良好的抗干扰性能、温度稳定性及与主电路的电气隔离。在本设计中最主要的是第1、2条。理想的触发脉冲电流波形如图3.6。图3.6 理想的晶闸管触发脉冲电流波形-脉冲前沿上升时间()-强脉冲宽度 -强脉冲幅值()-脉冲宽度 -脉冲平顶幅值()常用的晶闸管触发电路如图3.7。它由V1、V2构成的脉冲放大环节和脉冲变压器TM及附属电路构成的脉冲输出环节两部分组成。当V1、V2导通时,通过脉冲变压器向晶闸管的门极和阴极之间输出出发脉冲。VD1和R3是为了V1、V2由导通变为直截时脉冲变压器TM释放其储存的能量而设的。为了获得触发脉冲波形中的强脉冲部分,还需适当附加其它的电
26、路环节。图3.7 触发电路晶闸管触发电路类型很多,有分立式、集成式和数字式,分立式相控同步模拟电路相对来说电路比较复杂;数字式触发器可以在单片机上来实现,需要通过编程来实现,本设计不采用。由于集成电路可靠性高,技术性能好,体积小,功耗低,调试方便,所以本设计采用的是集成触发器,选择目前国内常用的KJ、KC系例,本设计采用KJ004集成块和KJ041集成块。对于三相全控整流或调压电路,要求顺序输出的触发脉冲依次间隔60。本设计采用三相同步绝对式触发方式。根据单相同步信号的上升沿和下降沿,形成两个同步点,分别发出两个相位互差180的触发脉冲。然后由分属三相的此种电路组成脉冲形成单元输出6路脉冲,再
27、经补脉冲形成及分配单元形成补脉冲并按顺序输出6路脉冲。本设计课题是三相全三相全控桥整流电路中有六个晶闸管,触发顺序依次为:VT1VT2VT3VT4VT5VT6,晶闸管必须严格按编号轮流导通,6个触发脉冲相位依次相差60O,可以选用3个KJ004集成块和一个KJ041集成块,即可形成六路双脉冲,再由六个晶体管进行脉冲放大,就可以构成三相全控桥整流电路的集成触发电路如图3.8。图3.8 三相全控桥整流电路的集成触发电路 图3.9 KJ004的电路原理图3.5 KJ004的工作原理如图3.9 KJ004的电路原理图所示,点划框内为KJ004的集成电路部分,它与分立元件的同步信号为锯齿波的触发电路相似
28、。V1V4等组成同步环节,同步电压uS经限流电阻R20加到V1、V2基极。在uS的正半周,V1导通,电流途径为(+15VR3VD1V1地);在uS负半周,V2、V3导通,电流途径为(+15VR3VD2V3R5R21(15V)。因此,在正、负半周期间。V4基本上处于截止状态。只有在同步电压|uS|0.7V时,V1V3截止,V4从电源十15V经R3、R4取得基极电流才能导通。电容C1接在V5的基极和集电极之间,组成电容负反馈的锯齿波发生器。在V4导通时,C1经V4、VD3迅速放电。当V4截止时,电流经(+15VR6C1R22RP1(15V)对C1充电,形成线性增长的锯齿波,锯齿波的斜率取决于流过R
29、22、RP1的充电电流和电容C1的大小。根据V4导通的情况可知,在同步电压正、负半周均有相同的锯齿波产生,并且两者有固定的相位关系。V6及外接元件组成移相环节。锯齿波电压uC5、偏移电压Ub、移相控制电压UC分别经R24、R23、R26在V6基极上叠加。当ube6+0.7V时,V6导通。设uC5、Ub为定值,改变UC,则改变了V6导通的时刻,从而调节脉冲的相位。V7等组成了脉冲形成环节。V7经电阻R25获得基极电流而导通,电容C2由电源+15V经电阻R7、VD5、V7基射结充电。当 V6由截止转为导通时,C2所充电压通过 V6成为 V7基极反向偏压,使V7截止。此后C2经 (+15VR25V6
30、地)放电并反向充电,当其充电电压uc2+1.4V时,V7又恢复导通。这样,在V7集电极就得到固定宽度的移相脉冲,其宽度由充电时间常数R25和C2决定。V8、V12为脉冲分选环节。在同步电压一个周期内,V7集电极输出两个相位差为180的脉冲。脉冲分选通过同步电压的正负半周进行。如在us正半周V1导通,V8截止,V12导通,V12把来自V7的正脉冲箝位在零电位。同时,V7正脉冲又通过二极管VD7,经V9V11放大后输出脉冲。在同步电压负半周,情况刚好相反,V8导通,V12截止,V7正脉冲经 V13V15放大后输出负相脉冲。说明:1) KJ004中稳压管VS6VS9可提高V8、V9、V12、V13的
31、门限电压,从而提高了电路的抗干扰能力。二极管VD1、VD2、VD6VD8为隔离二极管。2) 采用KJ004元件组装的六脉冲触发电路,二极管VD1VD12组成六个或门形成六路脉冲,并由三极管V1V6进行脉冲功率放大。3) 由于 V8、V12的脉冲分选作用,使得同步电压在一周内有两个相位上相差 的脉冲产生,这样,要获得三相全控桥式整流电路脉冲,需要六个与主电路同相的同步电压。因此主变压器接成D,yn11及同步变压器也接成D,yn11情况下,集成触发电路的同步电压uSa、uSb、uSc分别与同步变压器的uSA、uSB、uSC相接 RP1RP3为锯齿波斜率电位器,RP4RP6为同步相位3.6 脉冲变压
32、器的设计本方案的双脉冲电路是采用性能价格比优越的、每个触发单元的一个周期内输出两个相隔60的脉冲的电路。如图3.10中两个晶闸管构成一个“或”门。当V5 、V6都导通时,uc5 约为-15V,使截止,没有脉冲输出,但只要中有V5、V6中一个截止就使得变为正电压,使得V7 、V8导通就有脉冲输出。所以只要用适当的信号来控制的V5或V6截止(前后间隔60),就可以产生符合要求的双脉冲了。其中VD4和R17的作用,主要是防止双窄脉冲信号相互干扰。此触发脉冲环节的接线方式为:以VT1器件的触发单元而言,图3.10电路中的Y端应该接VT2器件触发单元的X端,因为VT2器件的第一个脉冲比VT1器件的第一个
33、脉冲滞后60。所以当VT2触发单元的V4由截止变导通时,本身输出一个脉冲,同时使VT1器件触发单元V6的管截止,给VT1器件补送一个脉冲。同理,VT1器件触发单元的X端应接VT6器件触发单元的Y端。依次类推,可以确定六个器件相应触发单元电路的双脉冲环节间的相互接线。图3.10同步型号为锯齿波的触发电路图3.10中脉冲变压器TP主要用于完成触发脉冲信号的电流放大,解决触发电路与晶闸管控制极电路之间的阻抗匹配,并实现弱电回路(触发回路)和强电回路(晶闸管主电路)之间的电隔离。如图可以得出TP脉冲变压器的一次侧电压U1 强触发电压50V弱触发电压15V。取变压器的变比K=5,脉冲宽度,脉冲变压器的磁
34、铁材料选择DR320。查阅资料可得铁心材料的饱和磁密, 饱和磁场强度 ,剩磁磁密 设计计算步骤为:(1)确定变压器的二次侧的强电压 (5-1) 确定变压器的二次侧的强电压 (5-2)(2)确定空载励磁电流 (5-3)式中,为一般取晶闸管最大触发电流的两倍。(3)计算脉冲磁导率,选定铁心材料。 第四章 PWM控制直流调速系统控制电路设计4.1 PWM信号发生器PWM信号发生器以集成可调脉宽调制器SG3525为核心构成,他把产生的电压信号送给两个IGBT。通过改变电力晶体管基极控制电压的占空比,而达到调速的目的。其控制电路如图4.1所示. 图4.1 PWM控制电路SG3525芯片的主要特点SG35
35、25 是一种性能优良、功能齐全和通用性强的单片集成PWM控制芯片,它简单可靠及使用方便灵活,输出驱动为推拉输出形式,增加了驱动能力;内部含有欠压锁定电路、软启动控制电路、PWM锁存器,有过流保护功能,频率可调,同时能限制最大占空比。 SG3525为美国Silicon General公司生产的专用PWM控制集成电路,如图4.2所示。 图4.2 SG3525芯片的内部结构它采用恒频脉宽调制控制方案,其内部包含有精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。调节Ur的大小,在A、B两端可输出两个幅度相等、频率相等、相位相互错开180度、占空比可调的矩形波(即PWM信号)。它适用于
36、各开关电源、斩波器的控制。 输出级采用推挽输出,双通道输出,占空比0-50%可调.每一通道的驱动电流最大值可达200mA,灌拉电流峰值可达500mA。可直接驱动功率MOS管,工作频率高达400KHz,具有欠压锁定、过压保护和软启动振荡器外部同步、死区时间可调、PWM琐存、禁止多脉冲、逐个脉冲关断等功能。该电路由基准电压源、震荡器、误差放大器、PWM比较器与锁存器、分相器、欠压锁定输出驱动级,软启动及关断电路等组成,可正常工作的温度范围是0-700C。基准电压为5.1 V士1%,工作电压范围很宽,为8V到35V.4.2 SG3525引脚各端子功能 SG3525采用16端双列直插DIP封装,各端子
37、功能介绍如下:1脚:INV. INPUT(反相输入端):误差放大器的反相输入端,该误差放大器的增益标称值为80db,其大小由反馈或输出负载来决定,输出负载可以是纯电阻,也可以是电阻性元件和电容元件的组合。该误差放大器共模输入电压范围是1. 5V-5. 2V。此端通常接到与电源输出电压相连接的电阻分压器上。负反馈控制时,将电源输出电压分压后与基准电压相比较。2脚:NI. INPUT (同相输入端):此端通常接到基准电压16脚的分压电阻上,取得2. 5V的基准比较电压与INV. INPUT端的取样电压相比较。3脚:SYNC(同步端):为外同步用。需要多个芯片同步工作时,每个芯片有各自的震荡频率,可
38、以分别他们的4脚和3脚相连,这时所有芯片的工作频率以最快的芯片工作频率同步。也可以使单个芯片以外部时钟频率工作。4脚:OSC. OUTPUT(同步输出端):同步脉冲输出。作为多个芯片同步工作时使用。但几个芯片的工作频率不能相差太大,同步脉冲频率应比震荡频率低一些。如不需多个芯片同步工作时,3脚和4脚悬空。4脚输出频率为输出脉冲频率的2倍。输出锯齿波电压范围为0. 6V到3. 5V.5脚:Cr(震荡电容端):震荡电容一端接至5脚,另一端直接接至地端。其取值范围为0.001,u F到0. 1 u F。正常工作时,在Cr两端可以得到一个从0.6V到3. 5V变化的锯齿波。6脚:Rr(震荡电阻端):震
39、荡电阻一端接至6脚,另一端直接接至地端。Rr的阻值决定了内部恒流值对Cr充电。其取值范围为2K欧到150K欧 Rr和Cr越大充电时间越长,反之则充电时间短。7脚:DISCHATGE RD(放电端):Cr的放电由5. 7两端的死区电阻决定。把充电和放电回路分开,有利与通过死区电阻来调节死区时间,使死区时间调节范围更宽。其取值范围为0欧到500欧。放电电阻RD和CT越大放电时间越长,反之则放电时间短。8脚:SOFTSTATR(软启动):比较器的反相端即软启动器控制端8,端8可外接软启动电容,该电容由内部Vf的50uA恒流源充电。9脚:COMPENSATION(补偿端):在误差放大器输出端9脚与误差
40、放大器反相输入端1脚间接电阻与电容,构成PI调节器,补偿系统的幅频、相频响应特性。补偿端工作电压范围为1. 5V到5. 2V.10脚:SHUTDOWN(关断端):10端为PWM锁存器的一个输入端,一般在10端接入过流检测信号。过流检测信号维持时间长时,软起动端8接的电容C:将被放电。电路正常工作时,该端呈高电平,其电位高于锯齿波的峰值电位(3. 30。在电路异常时,只要脚10电压大于0. 7V,三极管导通,反相端的电压将低于锯齿波的谷底电压(0.9V),使得输出PWM信号关闭,起到保护作用.11脚:OUTPUT A,14脚: OUTPUT B(脉冲输出端):输出末级采用推挽输出电路,驱动场效应
41、功率管时关断速度更快.11脚和14脚相位相差1800,拉电流和灌电流峰值达200mA。由于存在开闭滞后,使输出和吸收之间出现重迭导通。在重迭处有一个电流尖脉冲,起持续时间约为l00ns。可以在V处接一个约0. luf的电容滤去电压尖峰。12脚:GROUND(接地端):该芯片上的所有电压都是相对于GROUND而言,即是功率地也是信号地。在实验电路中,由于接入误差放大器反向输入端的反馈电压也是相对与12脚而言,所以主回路和控制回路的接地端应相连。13脚:VC(推挽输出电路电压输入端):作为推挽输出级的电压源,提高输出级输出功率。可以和15脚共用一个电源,也可用更高电压的电源。电压范围是1. 8V-
42、3. 4V.15脚:+VIN(芯片电源端):直流电源从15脚引入分为两路:一路作为内部逻辑和模拟电路的工作电压;另一路送到基准电压稳压器的输入端,产生5.1士1%V的内部基准电压。如果该脚电压低于门限电压(Turn-off: 8V),该芯片内部电路锁定,停止工作基准源及必要电路除外)使之消耗的电流降至很小(约2mA).另外,该脚电压最大不能超过35V.使用中应该用电容直接旁路到GROUND端。16脚:VREF(基准电压端):基准电压端16脚的电压由内部控制在5. 1 V土1%。可以分压后作为误差放大器的参考电压。4.1.3 SG3525的工作原理 SG3525内置了5.1V精密基准电源,微调至
43、 1.0%,在误差放大器共模输入电压范围内,无须外接分压电阻。SG3525还增加了同步功能,可以工作在主从模式,也可以与外部系统时钟信号同步,为设计提供了极大的灵活性。在CT引脚和Discharge引脚之间加入一个电阻就可以实现对死区时间的调节功能。由于SG3525内部集成了软启动电路,因此只需要一个外接定时电容。 SG3525的软启动接入端(引脚8)上通常接一个5 的软启动电容。上电过程中,由于电容两端的电压不能突变,因此与软启动电容接入端相连的PWM比较器反向输入端处于低电平,PWM比较器输出高电平。此时,PWM琐存器的输出也为高电平,该高电平通过两个或非门加到输出晶体管上,使之无法导通。
44、只有软启动电容充电至其上的电压使引脚8处于高电平时,SG3525才开始工作。由于实际中,基准电压通常是接在误差放大器的同相输入端上,而输出电压的采样电压则加在误差放大器的反相输入端上。当输出电压因输入电压的升高或负载的变化而升高时,误差放大器的输出将减小,这将导致PWM比较器输出为正的时间变长,PWM琐存器输出高电平的时间也变长,因此输出晶体管的导通时间将最终变短,从而使输出电压回落到额定值,实现了稳态。反之亦然。 外接关断信号对输出级和软启动电路都起作用。当Shutdown(引脚10)上的信号为高电平时,PWM琐存器将立即动作,禁止SG3525的输出,同时,软启动电容将开始放电。如果该高电平
45、持续,软启动电容将充分放电,直到关断信号结束,才重新进入软启动过程。注意,Shutdown引脚不能悬空,应通过接地电阻可靠接地,以防止外部干扰信号耦合而影响SG3525的正常工作。 欠电压锁定功能同样作用于输出级和软启动电路。如果输入电压过低,在SG3525的输出被关断同时,软启动电容将开始放电。 此外,SG3525还具有以下功能,即无论因为什么原因造成PWM脉冲中止,输出都将被中止,直到下一个时钟信号到来,PWM琐存器才被复位。 图4.3 SG3525引脚功能第五章 主电路元部件及参数计算5.1 整流变压器容量计算 变压器二次侧电压的计算 在一般情况下,晶闸管装置所要求的交流供电电压与电网电压往往不一致。此外,为了尽量减小电网与晶闸管装置的相互干扰。要求它们相互隔离,故通常要配用整流变压器。这里选项用的变压器的一次侧绕组采用联接。 为整流变压器的总容量,为变压