《恒压供水毕业设计基于PLC、变频器和触摸屏模拟恒压供水系统的设计.doc》由会员分享,可在线阅读,更多相关《恒压供水毕业设计基于PLC、变频器和触摸屏模拟恒压供水系统的设计.doc(52页珍藏版)》请在三一办公上搜索。
1、毕 业 论 文(设 计)题目:基于PLC、变频器和触摸屏模拟恒压供水系统的设计系 别: 电子工程系 专 业: 计算机与自动化控制 姓 名: 姚浩杰 学 号: 04 指导教师: 封定国、张东勇、王晓云 答辩日期: 基于PLC、变频器和触摸屏模拟恒压供水系统的设计摘要 本章以广东三向教学仪器制造有限公司SX系列“PLC控制变频器调速用触摸屏监控恒压供水系统”为研究对象。该系统集PLC、变频器调速器与触摸屏于一体。整套软、硬件配套齐全,具有特有的模拟楼宇恒压供水系统采用真实的压力装置、水泵和传感器。通过对该系统的主要结构与工作原理的探究与对模拟用户供水的工作过程和控制要求分析,给出了模拟用户用水时间
2、直观图、恒压供水原理图,并采用PLC控制变频调速器达到恒压供水的设计方法,进行了软硬件设计,列出了PLC的I/O地址分配表,绘制了PLC的I/O分配图和PLC控制原理图,编写PLC控制程序的梯形图和指令表;由触摸屏界面(GT)控制和监测整个系统的运行和数据,使整个控制系统的操作变得简单,方便。大大提高了系统的自动化程度和实用性。恒压供水方式技术先进、水压恒定、 操作方便、 运行可靠、 节约电能、 自动化程度高,在泵站供水中可完成以下功能: (1)维持水压恒定; (2)控制系统可手动/自动运行; (3)多台泵自动切换运行; (4)系统睡眠与唤醒。当外界停止用水时,系统处于睡眠状态,直至有用水需求
3、时自动唤醒; (5)在线调整 PID参数; (6)泵组及线路保护检测报警、信号显示等。关键词:可编程控制器(PLC);变频恒压供水系统;触摸屏界面(GT);FR-A500目录第1章 绪 论41.1 引言41.2 课题意义41.3 国内外在该方向的研究概况51.4 本文的主要工作6第2章 系统总体分析与设计72.1 系统概述72.2 恒压供水系统的节能原理82.3 恒压供水系统硬件设计9第3章 器件的选型及介绍143.1 可编程控制器PLC143.1.1 简介PLC的产生143.1.2 简介PLC的发展状况及其发展趋势153.1.4 简介PLC的应用领域163.1.5 PLC的工作过程163.1
4、.6 PLC的控制173.1.7 PLC的选型183.2 变频器193.2.1 变频器的构成193.2.2 变频器的特点233.2.3 变频器的接线243.3 PID调节243.4 压力传感器的接线图253.5 原件表25第四章PLC控制及编程284.1PLC控制284.2自动运行294.3 手动运行30第5章 人机界面315.1 GT Designer2人机界面触摸屏应用315.1.1 人机界面触摸屏基本知识315.2 人机界面触摸屏软件安装及连接与下载325.2.1 编程软件的安装325.2.2 编程软件的使用简介335.3GT Designer2 简要设置与操作34结束语40参考文献41
5、致谢42附录A、梯形图43附录B、触摸屏界面51第1章 绪 论水是生产生活中不可缺少的重要组成部分,在节水节能己成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。主要表现在用水高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象,而在用水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时将会造成能量的浪费,同时有可能导致水管爆破和用水设备的损坏。因此,开发基于PLC的变频恒压供水系统具有重要的现实意义。1.1 引言目前,居民生活用水和工业用水增长幅度日益加大.由于居民日常生活
6、用水会随季节、 昼夜等时间段的不同而不同,如采用传统的供水方式则会出现供水和用水不平衡的现象,造成资源浪费。传统的供水系统已经不能满足人们的要求.为了节约能源, 可采用变频恒压供水方式对传统供水系统加以改造,以达到节能、控制简单、供水稳定、减少污染等目的。1.2 课题意义本文介绍的是关于变频恒压供水系统的设计,因变频调速恒压供水技术其节能、安全、供水品高质等优点,在供水行业得到了广泛应用。恒压供水调速系统实现水泵电动机无级调速,依据用水量的变化(实际上为供水管网的压力变化)自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求是当今先进、合理的节能型供水系统。模拟在实际应用中如何
7、充分利用变频器内置的各种功能,对合理设计变频器调速恒压供水设备,降低成本、保证产品质量等有着重要意义。1.3 国内外在该方向的研究概况变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。在早期,由于国外生产的变频器的功能主要限定在频率控制、升降速控制、正反转控制、起制动控制、变压变频比控制及各种保护功能。应用在变频恒压供水系统中,变频器仅作为执行机构,为了满足供水量大小需求不同时,保证管网压力恒定,需在变频器外部提供压力控制器和压力传感器,对压力进行闭环控制。从查阅的资料的情况来看,国外的恒压供水工程在设计时都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情
8、况,因而投资成本高。即1968年,丹麦的丹佛斯公司发明并首家生产变频器(丹佛斯是传动产品全球五大核心供应商之一)后,随着变频技术的发展和变频恒压供水系统的稳定性、可靠性以及自动化程度高等方面的优点以及显著的节能效果被大家发现和认可后,国外许多生产变频器的厂家开始重视并推出具有恒压供水功能的变频器,像瑞典、瑞士的ABB集团推出了HVAC变频技术,法国的施耐德公司就推出了恒压供水基板,备有“变频泵固定方式”,“变频泵循坏方式”两种模式。它将PID调节器和PLC可编程控制器等硬件集成在变频器控制基板上,通过设置指令代码实现PLC和PID等电控系统的功能,只要搭载配套的恒压供水单元,便可直接控制多个内
9、置的电磁接触器工作,可构成最多七台电机(泵)的供水系统。这类设备虽然说是微化了电路结构,降低了设备成本,但其输出接口的扩展功能缺乏灵活性,系统的动态性能和稳定性不高,与别的监控系统(如BA系统)和组态软件难以实现数据通信,并且限制了带负载的容量,因此在实际使用时其范围将会受到限制。目前国内有不少公司在做变频恒压供水的工程,大多采用国外品牌的变频器控制水泵的转速,水管的管网压力的闭环调节及多台水泵的循环控制,有的采用可编程控制器(PLC)及相应的软件予以实现;有的采用单片机及相应的软件予以实现。但在系统的动态性能、稳定性能、抗干扰性能以及开放性等多方面的综合技术指标来说,还远远没能达到所有用户的
10、要求。原深圳华为(现己更名为艾默生)电气公司和成都希望集团森兰牌变频器)也推出了恒压供水专用变频器(2.2kw-30kw),无需外接PLC和PID调节器,可完成最多四台水泵的循坏切换、定时起动、停止和定时循环(月麦丹佛斯公司的VLT系列变频器可实现七台水泵机组的切换)。该变频器将压力闭环调节与循环逻辑控制功能集成在变频器内部实现,但其输出接口限制了带负载容量,同时操作不方便且不具有数据通信功能,因此只适用于小容量,控制要求不高的供水场所。可以看出,目前在国内外变频调速恒压供水控制系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的电磁兼容性(EMC)的变频
11、但压供水系统的水压闭环控制的研究还是不够的。因此,有待于进一步研究改善变频恒压供水系统的性能,使其能被更好的应用于生活、生产实践中。采用变频调节以后,系统实现了软起动,电机起动电流从零逐渐增至额定电流,起动时间相应延长,对电网没有较大的冲击,减轻了起动机械转矩对于电机的机械损伤,有效的延长了电机的使用寿命。这种调控方式以稳定水压为目的,各种优化方案都是以母管进口压力保持恒定为条件。实际上,给水泵站的出口压力允许在一定范围内变化。因此这种调控方式缩小了优化范围,所得到的解为局部最优解,不能完全保证泵站始终工作在最优状态.变频调速是优于以往任何一种调速方式(如调压调速、变极调速、串级调速等),是当
12、今国际上一项效益最高、性能最好、应用最广、最有发展前途的电机调速技术.它采用微机控制技术;电力电子技术和电机传动技术实现了工业交流电动机的无级调速,具有高效率、宽范围和高精度等特点。以变频器为核心结合PLC组成的控制系统具有高可靠性、强抗干扰能力、组合灵活、编程简单、维修方便和低成本低能耗等诸多特点。1.4 本文的主要工作本文采用电动机、变频器与可编程控制器(PLC)构成控制系统,用触摸屏界面进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的。系统的控制目标是泵站总管的出水压力,系统设定的给水压力值与反馈的总管压力实际
13、值进行比较,其差值输入CPU运算处理后,发出控制指令,控制泵电动机的投运台数和运行变量泵电动机的转速,从而达到给水总管压力稳定在设定的压力值上。恒压供水就是利用PLC的PID指令或PI功能实现的工业过程的闭环控制。即将压力控制点测的压力信号(420)直接输入到PLC的3A模块中,再由3A模块中输出0-250的数字量在PLC的PID程序中运用起来,由PLC将其与用户设定的压力值进行比较,并通过PLC程序中PID指令运算将结果转换为频率调节信号调整水泵电机的电源频率,从而实现控制水泵转速。第2章 系统总体分析与设计本章从系统概述、变频恒压供水的节能原理和系统的硬件设计三个方面对该系统进行了总体分析
14、说明。2.1 系统概述如图2.1所示,为该系统的供水流程。图2.1 供水流程简图随着变频技术的发展和人们对生活饮用水品质要求的不断提高,变频恒压供水系统以其环保、节能和高品质的供水质量等特点,广泛应用于多层住宅小区及高层建筑的生活、消防供水中。变频恒压供水的调速系统可以实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统。在实际应用中如何充分利用专用变频器内置的各种功能,对合理设计变频恒压供水设备、降低成本、保证产品质量等有着重要意义。变频恒压供水方式与过去的水塔或高位水箱以及气压供水方式相比,不论是设备
15、的投资,运行的经济性,还是系统的稳定性、可靠性、自动化程度等方面都具有无法比拟的优势,而且具有显著的节能效果。目前变频恒压供水系统正向着高可靠性、全数字化微机控制、多品种系列化的方向发展。追求高度智能化、系列化、标准化,是未来供水设备适应城镇建设中成片开发、智能楼宇、网络供水调度和整体规划要求的必然趋势。2.2 恒压供水系统的节能原理在变频恒压供水系统中, 关键是对水泵的控制.泵的转速 n 与流量Q、 扬程 H 及泵的轴功率N 的关系如下式所示: (1)泵用电动机驱动时,电动机功率 P 可用下式表示: (2) 式中:泵的流量 Q 和扬程H 的关系曲线见图2.2 . 曲线、 分别对应转速n1 、
16、 n2( n1 n2) 时的 H - Q 特性曲线, 曲线、 为管阻特性曲线. 当调节流量时, 通常采用调节阀门和变频调速两种方式.图2.2 泵的流量 Q 和扬程H 的关系曲线假设泵的额定工作点为 N 点, 额定流量 QN 为100 % ,此时轴功率 P1 与图中 QNNHN0 区域面积成正比.(1) 调节阀门法当流量从 QN 减小到QA 时,采用调节阀门法, 管阻特性曲线从 切换至 , 扬程 H 增大, 工作点由 N 切换至 A. 此时轴功率 P2 与图中 QAHAA 0 区域面积成正比。(2) 变频调速法由式( 1) 可知,泵的流量 Q 与转速n 成正比, 要将流量从 QN 减小到QA 时
17、,可将泵转速从 n1 降至n2 , 工作点从 N 切换至B, 扬程H 减小. 在同样流量QA 下, 轴功率 P3 与图中 QAHBB 0 区域面积成正比. 由图可知,P3 P2 ,在同样流量QA 下, 采用调速法节省的轴功率与图中阴影部分( BAHAHB) 区域面积成正比, 节能效果非常明显.对于电机的转速,可用下式表示: (3)式中: n 电机转速,r/ m in ;f 电源频率,H z ;p 电机极对数;s 转差率.因此,当调节泵的流量时, 通过改变频率调节电机速度,即采用变频调速法, 比采用调节阀门法节能.2.3 恒压供水系统硬件设计2.3.1 供水系统的构成图2.3 供水系统方案图如下
18、图2.4所示,整个系统由三台水泵,一台PLC和一个压力传感器及若干辅助部件构成。三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台水泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,一般采用电阻式传感器(反馈05V电压信号)或压力变送器(反馈420mA电流);变频器是供水系统的核心,通过改变电机的频率实现电机的无级调速、无波动稳压的效果和各项功能。从原理框图,可以看出变频调速恒压供水系统由执行机构、信号检测、控制系统、人机界面、以及报警装置等部分组成。图2.4 系统原理图(1)执行机构执行机构是由一组水泵组成,它们用于将水供入用户管网,图中的3个水泵分为2种类型
19、:调速泵:是由变频调速控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。恒速泵:水泵运行只在工频状态,速度恒定。它们用于在用水量增大而调速泵的最大供水能力不足时,对供水量进行定量的补充。(2)信号检测在系统控制过程中,需要检测的信号包括自来水出水水压信号和报警信号:水压信号:它反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。报警信号:它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常。该信号为开关量信号。(3)控制系统供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。供水控制器:它是整个变频恒压供
20、水控制系统的核心。供水控制器直接对系统中的工况、压力、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水泵)进行控制。变频器:它是对水泵进行转速控制的单元。变频器跟踪供水控制器送来的控制信号改变调速泵的运行频率,完成对调速泵的转速控制。电控设备:它是由一组接触器、保护继电器、转换开关等电器元件组成。用于在供水控制器的控制下完成对水泵的切换、手/自动切换。(4)人机界面(GT)人机界面是人与机器进行信息交流的场所。通过人机界面,使用者可以更改设定值,修改一些系统设定以满足不同工艺的需求,同时使用者也可以从人
21、机界面上得知系统的一些运行情况及设备的工作状态。人机界面还可以对系统的运行过程进行监视,对报警进行显示。(5)通讯接口通讯接口是本系统的一个重要组成部分,通过该接口,系统可以和组态软件以及其他的工业监控系统进行数据交换,同时通过通信接口,还可以将现代先进的网络技术用到本系统中来,例如可以对系统进行远程的诊断和维护等(6)报警装置作为一个控制系统,报警是必不可少的重要组成部分。由于本系统能适用于不同的供水领域,所以为了保证系统安全、可靠、平稳的运行,防止因电机过载、变频器报警、电网过大波动、供水水源中断、出水超压、泵站内溢水等等造成的故障,因此必须要对各种报警量进行监测,由PLC判断报警类别,进
22、行显示和保护动作控制,以免造成不必要的损失2.3.2 供水系统的主电路接线及其工作原理图2.5 系统主接线图图2.6 实物连线图由图2.5可知,电机有两种工作模式即:在工频电下运行和在变频电下运行。KM1、 KM3、 KM5 分别为电动机M1 、M2 、M3 工频运行时接通电源的控制接触器,KM0、 KM2 、KM4 分别为电动机M1、M2、 M3 变频运行时接通电源的控制接触器。热继电器(FR)是利用电流的热效应原理工作的保护电路,它在电路中的用作电动机的过载保护。熔断器(FU)是电路中的一种简单的短路保护装置。使用中,由于电流超过允许值产生的热量使串接于主电路中的熔体熔化而切断电路,防止电
23、气设备短路和严重过载。交流接触器控制回路部分连接图如下图2.7所示(虚线框里为挂箱内部已经连接)即Y21Y26分别控制继电器KM0KM5, KM0与KM1, KM2与KM3, KM4与KM5之间分别互锁,防止它们同时闭合使变频器输出端接入电源输入端。图2.7 交流接触器控制回路图2.8 交流接触器控制回路第3章 器件的选型及介绍本论文设计主要用到PLC(即可编程逻辑控制器),变频器,PID调节器,压力传感器及其他辅助元器件,本章主要介绍这些器件的选型及相关介绍。3.1 可编程控制器PLC可编程控制器是60年代末在继电器系统上发展起来的,当时称作可编程逻辑控制器(Programmable Log
24、ic Controller),简称PLC。3.1.1 简介PLC的产生20世纪60年代末期,美国的汽车制造业竞争激烈,为了适应白热化的市场竞争要求,1968年美国通用汽车公司(GM)公开招标,对汽车流水线控制系统提出具体要求,归纳起来是:(1)编程方便,可现场修改程序;(2)维修方便,采用插件式结构;(3)可靠性高于继电器控制装置;(4)体积小于继电器控制盘;(5)数据可直接送入管理计算机;(6)成本可与继电器控制盘竞争;(7)输入可以是交流市电(115V)(美国电压标准)(8)输出为交流115V,容量要求在2A以上,可直接驱动接触器、电磁阀等;(9)扩展时原系统改变小;(10)用户程序存储器
25、至少能扩展到4KB。这就是著名的“GM十条”。1969年美国数字设备公司(DEC)中标后,制造出世界上第一台可编程序控制器。(Programmable Logic Controller, 简称PLC)。16位和32位微处理器的应用,使PLC得到了惊人的发展,现在已经成为自动化技术的三大支柱之一。3.1.2 简介PLC的发展状况及其发展趋势现在的PLC产品已经使用了16位、32位高性能微处理器,而且实现了多处理器的多通道处理,通信技术使PLC的应用得到进一步发展。PLC的技术已经非常成熟。目前,世界上有200多个厂家生产PLC产品。比较著名的有美国的AB、通用(GE)、莫迪康(MODICON)、
26、日本的三菱(MITSUBISHI)、欧姆龙(OMRON)、富士电机(FUJI)、松下电工、德国的西门子(SIEMENS)、法国的TE、施耐德(SCHNEIDER)、韩国的三星(SAMSUNG)、LG等。PLC总的发展趋势是向高集成度、小体积、大容量、高速度、易使用、高性能方向发展。具体表现在以下几方面:(1). 向小型化、专用化、低成本方向发展(2). 向大容量、高速度方向发展(3). 智能型I/O模块的发展(4). 基于PC的编程软件取代编程器(5). PLC编程语言的标准化(6). PLC通信的易用化.(7). 组态软件与PLC的软件化(8). PLC与现场总线相结合3.1.4 简介PLC
27、的应用领域目前PLC在国内外广泛应用于钢铁、采矿、水泥、石油、化工、电力、机械制造、汽车、装卸、造纸、纺织、环保和娱乐等行业。(1)顺序控制例如:注塑机械、印刷机械、订书机械、包装机械、切纸机械、组合机床、磨床、装配生产线、电镀流水线及电梯控制等等。(2)运动控制(3)过程控制PLC能控制大量的过程参数,例如:温度、流量、压力、液位和速度。(4)数据处理(5)通信联网3.1.5 PLC的工作过程PLC是在系统软件的控制和指挥下,采用循环顺序扫描的工作方式,其工作过程就是程序的执行过程,它分为输入采样、程序执行和输出刷新三个阶段,如图3.1所示。图3.1 PLC的扫描工作过程PLC在I/O处理方
28、面必须遵守的规则如下:输入映像寄存器的数据,取决于输入端子板在上一个刷新时间的状态;程序如何执行,取决于用户所编的程序和输入映像寄存器、元件映像寄存器中存放的所需软元件的状态;输出映像寄存器(包含在元件映像寄存器中)的状态,由输出指令的执行结果决定。输出锁存器中的数据,由上一个刷新时间输出映像寄存器的状态决定;输出端子上的输出状态,由输出锁存器中的状态决定。3.1.6 PLC的控制PLC在这个实验中的作用是控制交流接触器组进行工频-变频的切换和水泵工作数量的调整。由实验步骤中主回路接线图可以看出,交流接触器组中的KM0与KM1分别控制1#水泵的变频运行和工频运行,而KM2和KM3则控制2#水泵
29、的变频与工频,KM4与KM5 控制3#水泵的变频与工频起动。它们的运行要求如下所述。系统启动时,KM0闭合,1#水泵以变频方式运行。当变频器的运行超出设定值时输出一个上限信号,PLC通过这个上限信号后将1#水泵由变频运行转为工频运行,KM0断开,KM1吸合,同时KM2吸合变频起动第2#水泵。如果再次收到变频器上限输出信号,则KM2断开KM3吸合,2#水泵由变频转为工频,同时KM4闭合3#水泵变频运行。如果变频器频率偏低,即压力过高,输出的下限信号使PLC关闭KM4、KM3,开启KM2,2#水泵变频启动。再次收到下限信号就关闭KM2、KM1,吸合KM0,只剩下1#水泵变频工作。注意:KM0、KM
30、2、KM4三台电机变频运行均要互锁,KM0与KM1,KM2与KM3,KM4与KM5均要互锁,目的是为了保护变频器。同时,模拟用户电磁阀还可以通过X10X14的输入端开启。变频器的运转输出由Y10控制(正转)。程序开始时,进行A/D转换程序,将供水的压力值存入PLC内部数据存储器D48,而液面高度存入D1里。PLC参考程序流程如图3.2:图3.2 PLC参考程序流程图3.1.7 PLC的选型水泵M1、M2,M3可变频运行,也可工频运行,需PLC的6个输出点,变频器的运行与关断由PLC的1个输出点,控制变频器使电机正转需1个输出信号控制,报警器的控制需要1个输出点,用户的控制需要5个输出点,输出点
31、数量一共14个。控制起动和停止需要2个输入点,系统自动/手动起动需1输入点,手动控制电机的工频/变频运行需6个输入点,控制系统停止运行需1个输入点,检测电机是否过载需3个输入点,用户的控制需要个输5入点,共需18个输入点。系统所需的输入输出点数量共为32个点。本系统选用FX2n-48MR型PLC。3.2 变频器3.2.1 变频器的构成通常由变频器主电路(IGBT、BJT、或GTO作逆变元件)给异步电动机提供调压调频电源。此电源输出的电压或电流及频率,由控制回路的控制指令进行控制。而控制指令则根据外部的运转指令进行运算获得。对于需要更精密速度或快速响应的场合,运算还应包含由变频器主电路和传动系统
32、检测出来的信号和保护电路信号,即防止因变频器主电路的过电压、过电流引起的损失外,还应保护异步电动机及传动系统等。图3.2 变频器的构成1.主电路给异步电动机提供调压调频电源的电力变换部分,称为主电路。图3.4所示是典型的电压逆变器的例子,其主电路由三部分构成,将工频电源变换为直流功率的“整流器”,吸引在整流和逆变时产生的电压脉动的“平波回路”以及将直流功率变换为交流功率的“逆变器”。另外,异步电动机需要制动时,有时要附加“制动回路”。 整流器最近大量使用的是二极管的交流器,图3.4所示,它把工频电源变换为直流电源。可用两组晶体管交流器构成可逆变流器,其功率方向可逆,可以再生运转。 平波回路在整
33、流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电压吸收脉动电压(电流)。装置容量小时,如果电源和主电路的构成器件有余量,可以省去电感采用简单的平波回路。 逆变器同整流器相反,逆变器的作用是将直流功率变换为所需要频率的交流功率,根据PWM控制信号使6个开关器件导通、关断,就可以得到三相频率可变的交流输出。图3.3以电压型PWM逆变器为例示出开关时间和电压波形。图3.3 电压型逆变器的输出电压制动回路异步电动机在再生制动区域使用时(转差率为负),再生能量储存于平波回路电容器中,使直流电压升高。一般说来,由机械系统(含电动机
34、)惯量积蓄的能量比电容能储存的能量大,需要快速制动时,可用由逆变流器向电源反馈或设置制动回路(开关和电阻)把再生功率消耗掉,以免直流电路电压上升。图3.4 典型的电压型逆变器一例2. 控制电路给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,称为控制电路。如图3.2所示,控制电路由以下电路组成,频率、电压的“运算电路”,主电路的“电压/电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”。在图3.2点划线内,仅以控制电路A部分构成控制电路时,无速度检测电路,为开环控制。在控制电路B部分增加了速度检测电路,即增加了速度
35、指令,可以对异步电动机的速度进行控制更精确的闭环控制。控制电路主要包括:运算电路将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、功率。 电压/电流检测电路与主电路电位隔离,检测电压、电流等。 驱动电路为驱动主电路 器件的电路。它使主电路器件导通、关断。 速度检测电路以装在异步电动机轴上的速度检测器(TG、PLG等)的信号为速度信号送入运算回路,根据指令和运算可使电动机按指令速度运转。 保护电路检测主电路的电压、电流等,当发生过载或过压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。保护回路主要包括:(1)逆变器保护1)瞬时过电
36、压保护。由于逆变器负载侧短路等,流过逆变器器件的电流达到异常值(超过容许值)时,瞬时停止逆变器运转,切断电流。交流器的输出电流达到异常值,也同样停止逆变器运转。2)过载保护。逆变器输出电流超过额定值,且持续流通达规定的时间以上,为了防止逆变器器件、线路等损坏要停止运转。恰当的保护需要反时限特性,采用热继电器或者电子热保护(使用电子电路)。过负载是由于负载的GD2(惯性)过大或因负载过大使电动机堵转而产生的。3)再生过电压保护。采用逆变器使电动机快速减速时,由于再生功率直流电路电压将升高,有时超过容许值。可以采取停止逆变器运转或停止快速减速的办法,防止过电压。4)瞬时停电保护。对于数毫秒以内的瞬
37、时停电,控制电路工作正常。但瞬时停电时间在10ms以上时,通常会使控制电路误动作,主电路也不能供电,所以检出后使逆变器停止运转。5)接地过电流保护。逆变器负载侧接地时,为了保护逆变器,有时要有接地过电流保护功能。但为了确保人身安全,需要转设漏电断路器。6)冷却风机异常。有冷却风机的装置,但风机异常时装置内温度将上升,因此采用风机热继电器或器件散热片温度传感器,检出异常后停止逆变器。(2)异步电动机的保护1)过载保护。过载检出装置与逆变器保护共用,但考虑低速运转的过热时,在异步电动机内埋入温度传感器,或者利用转在逆变器内的电子热保护来检出过热。动作频繁时可以考虑减轻电动机负载、增加电动机及逆变器
38、容量等。2)超频(超速)保护。逆变器的输出频率或者异步电动机的速度超过规定值时,停止逆变器运转。(3)其他保护1)防止失速过电流。急加速时,如果异步电动机跟踪迟缓,则过电流保护电路动作,运转就不能继续进行(失速)。所以,在负载电流减小之前要进行控制,抑制频率上升或使频率下降。对于恒速运转中的过电流,也进行同样的控制。2)防止失速再生过电压。减速时产生的再生能量使主电路直流电压上升,为了防止再生过电压保护电路动作,在直流电压下降之前要进行控制,抑制频率下降,防止失速再生过电压。3.2.2 变频器的特点变频调速特别是变频调速技术的发展,已使世界范围内的电气传动控制领域发生了根本性的变革,它是计算机
39、控制技术、智能控制技术、电力电子技术等的综合产物。由于变频器具有高动态、高性能、大容量、节能等显著的特点,并以其优越的调速性能和节能优势得到广泛应用,并取得了客观的经济效益。国内外的资料表明,使用变频设备可使水泵运行平均转速比工频转速降低20%,从而大大降低能耗,节能效率可达20%40%。节约了电费、降低了生产成本、减少了启动时对电网的冲击,改善了工作环境,并易于实现自动化,同时可根据生产工艺的要求控制的更准确、更快速。变频恒压供水系统主要有以下几个特点:1)高效节能变频调速恒压供水设备使整个供水系统始终保持最优工作状态节电率可达35%60% ,这一特点已被广大用户所认识并带来效益2)占地面积
40、小,投人少,效率高采用水池上直接安装立式泵,控制间只要安放一到两个控制柜,体积很小,整个系统占地面积非常小,可以节省投资。另外不用水塔或天面水池、控制间不设专人管理、设备故障率极低等方面都实现了进一步减少投资,运行管理费低的特点,再加上变频供水的节能优点,都决定了此变频恒压供水系统占地面积小,投人少,效率高。3)配置灵活,功能齐全,自动化程度高。4)安全卫生系统实行闭环供水后,用户的水全部由管道直接供给,取消了水塔、天面水池、气压罐等设施,避免了用水的“二次污染”,取消了水池定期清理的工作。5)管理简便变频恒压供水系统具备了过流、过压、欠压、欠相、短路保护、瞬时停电保护、过载、失速保护、主泵定
41、时轮换控制等功能,功能完善,自动运行,可以实现无人值守,节省了人力物力根据设计的要求,本系统选用FR-A540系列变频器3.2.3 变频器的接线管脚STF接PLC的Y10管脚,控制电机的正转。图3.5 变频器接线图3.3 PID调节PID参数的整定 ,它是按照工艺对控制性能的要求 ,决定调节器的参数Kp , TI , TD。控制表达式为:其增量式为:其中:在恒压供水中常见的PID控制器的控制形式主要有两种:(1)硬件型:即通用PID控制器,在使用时只需要进行线路的连接和P、I、D参数及日标值的设定。(2)软件型:使用离散形式的PID控制算法在可编程序控制器(或单片机)上做PID控制器此次使用软
42、件型控制形式。3.4 压力传感器的接线图压力传感器使用YP4021-0.6Mpa-B-G-1型绝对压力传感器。该传感器采用硅压阻效应原理实现压力测量的力电转换。传感器由敏感芯体和信号调理电路组成,当压力作用于传感器时,敏感芯体内硅片上的惠斯登电桥的输出电压发生变化,信号调理电路将输出的电压信号作放大处理,同时进行温度补偿、非线性补偿,使传感器的电性能满足技术指标的要求。该传感器的量程为00.6Mpa(由于该系统的多种保护措施,令到传感器的最大输出压力为0.15Mpa),工作温度为560 ,供电电源为24V(DC),输出电流为4-20mA,精度为0.5%FS。图3.7 压力传感器的接线图3.5
43、原件表水泵:3台均选用BL-550型微心泵,参数见表3.1所示。 热继电器的选择:选用最小的热继电器作为电机的过载保护热继电器FR, 3台电机均可选用规格其型号为JR36-20,额定电流10A。熔断器的选择:在控制回路中熔断器FU选用RT18系列。接触器的选择:对于接触器KM选择的是规格SC-E03-C,功率3Kw。按钮SB的选择:PLC各输入点的回路的额定电压直流24V,各输入点的回路的额定电流均小于40mA,按钮均只需具有1对常开触点,按钮均选用LAY311型,其主要技术参数为:UN=24VDC,IN=0.3A,含1对常开和1对常闭触点。表3.1元件表总图元件符号型号个数可编程控制器PLC
44、FX2n-48MR1变频器FR-A500系列1.5K1接触器KMSC-E03-C7水泵M1,M2,M3BL-5503闸刀开关QSHD11-100/181熔断器FU1,FU2,FU3RT18 6A3热继电器FR1, FR2,FR3JR36-203按钮SBLAY31113表3.2水泵的参数水泵符号型号流量(L/min)扬程(m)转速(r/min)电机功率(kw)M1,M2,KM3BL-5501471928002.2表3.3 变频器的参数变频器适用电机容量(KW)输出额定容量(KVA)输出额定电流(A)过载能力电源额定输入交流电压/频率冷却方式FR-A500系列5.5型(三菱)1.59.112150
45、%60s ,200% 0.5s (反时限特性)3相,380V 50Hz/60Hz强制风冷当需要校准时,用Pr902Pr905校正变频器的输出,并且在变频器停止时,在PU模式输入表3.4所示的值。表3.4 变频器的Pr制设定表第四章 PLC控制及编程4.1 PLC控制PLC在系统中的作用是控制交流接触器组进行工频变频的切换和水泵工作数量的调整。工作流程如图4.1所示,顺序功能图如图4.2所示:图4.1 PLC程序流程图系统起动之后,检测是自动运行模式还是手动运行模式。如果是手动运行模式则进行手动操作,人们根据自己的需要操作相应的按钮,系统根据按钮执行相应操作。如果是自动运行模式,则系统根据程序及相关的输入信号执行相应的操作。手动模式主要是解决系统出错或器件出问题在自动运行模式中,如果当前管道压力值少于设定压力,持续三秒,则执行增泵程序,增加水泵的工作数量。如果当前管道压力值大于设定压力,持续三秒,则执行减泵程序,减少水泵的工作数量。如果当前管道压力值等于设定压力,持续三秒,则不执行增减泵程序。4.2 自动运行