《影响我国农业总产值因素的实证分析.doc》由会员分享,可在线阅读,更多相关《影响我国农业总产值因素的实证分析.doc(14页珍藏版)》请在三一办公上搜索。
1、影响我国农业总产值因素的实证分析 内容摘要:解决“三农”问题是当前我国完善社会主义市场经济制度的重头戏,而实现农业的繁荣兴旺又是其中的重中之重。改革开放以来,我国农业发展取得的喜人的成绩,但是制约因素也很多,这使得入世后如何保护我国农业的利益,保持农业稳定成为难题。深入了解农业发展状况,有足于认清和解决问题。本文是根据我国农业的现状,想从计量经济学的角度来验证一下是否存在政府对农业投入不足、农业的现代化程度(以农业的机械化为衡量指标),以及农村中存在大量的剩余劳动力。根据经济学原理,在模型中我们引入了五个变量:农村居民家庭平均每户生产型固定投资,化肥施用量,农业机械总动力,政府财政用于农业的支
2、出以及农业从业人员。利用EVIEWS软件对计量模型进行了参数估计和检验,多重共线性的检验,异方差的检验和自相关的检验并加以修正。从我们所做的回归结果看,我国农村中确实存在政府对农业投入不足、农村中存在大量的剩余劳动力,我国的农业机械化程度是较低的,对我国的农业增加值的贡献十分低下等问题。我们根据模型的回归结果作了经济意义的分析,并相应提出一些政策建议。但是,鉴于水平有限,文中难免出现一些错误。另外还存在一些我们难以解决的问题,请老师同学们多多包涵!关键词:农业总产值 国家财政对农业的基础性建设投资 农业从业人员人数 农村居民家庭平均每户生产型固定投资 化肥施用量 农业机械总动力一、 导论我国农
3、业的重要性我国是农业大国,农业的发展程度直接制约着我国的第二、第三产业的发展,是工业品市场;农业的发展能为国民经济其他部门发展提供劳动力阵地。农产品是轻工业的重要原料、重要的出口商品。目前,我国70%人口在农村,农业生产的发展直接关系广大农民生活的提高,直接关系到国家经济建设目标的实现。农产品在城乡是人民的生活必需品,所以又直接关系到城乡人民生活的提高,物价稳定,社会安定。我国农业生产相对落后,已成为国民经济最薄弱的环节,它已很难支撑国民经济其他部门的快速发展。因而,农业生产的发展是我国人民生活水平提高、现代化建设、社会稳定的基础,并最终决定着国民经济其他各部门的发展规模和速度,是能否实现现代
4、化战略目标的关键。二,模型的设定为了在更高层次上发展我国的经济,真正实现全民共同富裕的伟大目标,保证粮食安全,关注农业总产值是必要的。而影响到农业总产值的因素是多方面的。因此,我们提取了国家财政对农业的基础性建设投资,农业从业人员人数, 农村居民家庭平均每户生产型固定投资,化肥施用量,农业机械总动力这五个对农业总产值有较大影响的因素的时间序列数据来进行分析,希望通过建立一个合适的经济模型来从理论上找出影响农业总产值的因素,从而提出增加农业总产值的方法。在此,我们将“农业产总值”设为因变量,“农村居民家庭平均每户生产型固定投资”,“化肥施用量”,“农业机械总动力”,“政府财政用于农业的支出”,及
5、“第一产业从业人员人数”设为自变量,设定了以下经济学模型:Y =C+UY=农业总产值(亿元)=农村居民家庭平均每户生产型固定投资(元)=化肥施用量(万吨)=农业机械总动力(万 千瓦)=政府财政用于农业的支出(亿元)=农业从业人员(万人)数据如下:obsYX2X3X4X5X61989 6534.730 1126.070 2357.100 28067.00 265.9400 32440.501990 7662.090 1258.060 2590.300 28707.70 307.8400 33336.401991 8157.030 1401.010 2805.100 29388.60 347.57
6、00 34186.301992 9084.710 1643.950 2930.200 30308.40 376.0200 34037.001993 10995.53 1950.310 3151.900 31816.60 440.4500 33258.201994 15750.47 2347.630 3317.900 33802.50 532.9800 32690.301995 20340.86 2774.270 3593.700 36118.10 567.2200 32334.501996 22353.70 3605.070 3827.900 38546.90 700.4300 32260.4
7、01997 23788.40 3896.560 3980.700 42015.60 766.3900 32434.901998 24541.90 3970.810 4083.700 45207.70 1154.760 32626.401999 24519.10 4045.480 4124.300 48996.10 1085.760 32911.802000 24915.80 4676.980 4146.400 52573.60 1231.540 32797.502001 26179.60 4883.800 4253.800 55172.10 1456.730 32451.002002 2739
8、0.80 5221.330 4339.400 57929.90 1580.760 31990.602003 29691.80 5586.340 4411.600 60386.50 1754.450 31259.60资料来源:,中国统计年鉴2004,中国统计年鉴1998三, 参数估计模型为:Y =C+UY=农业总产值(亿元) =农村居民家庭平均每户生产型固定投资(元)=化肥施用量(万吨) =农业机械总动力(万 千瓦)=政府财政用于农业的支出(亿元) =农业从业人员(万人)用Eviews估计结果为:Dependent Variable: YMethod: Least SquaresDate: 04
9、/30/05 Time: 12:51Sample: 1989 2003Included observations: 15VariableCoefficientStd. Errort-StatisticProb. C40016.9715190.732.6343030.0272X20.5509391.9208270.2868240.7807X310.087662.2054494.5739720.0013X40.0665550.2303620.2889160.7792X5-2.6453473.625498-0.7296510.4842X6-1.8264690.535716-3.4093960.007
10、8R-squared0.992862 Mean dependent var18793.77Adjusted R-squared0.988896 S.D. dependent var8203.735S.E. of regression864.4572 Akaike info criterion16.65126Sum squared resid6725576. Schwarz criterion16.93448Log likelihood-118.8844 F-statistic250.3705Durbin-Watson stat1.561839 Prob(F-statistic)0.000000
11、Y = 40016.97+0.550939+10.08766+0.066555+(-2.645347)+ (-1.826469) T = (2.634303) (0.286824) (4.573972) (0.288916) (-0.729651) (-3.409396) =0.992862四, 检验及修正1经济意义检验从上表中可以看出,符号为负,应剔出。而虽然在理论上说不通,但却符合中国现实的国情,应保留,其意义将在第四部分加以阐述。而其他因素不与经济原理向悖,说明具有经济意义。2统计推断检验从回归结果可以看出,模型的拟和优度非常好(=0.992862),F统计量的值在给定显著性水平=0.0
12、5的情况下也较显著,但是、的t统计值均不显著(、的t统计量的值的绝对值均小于2),说明、这两个变量对Y的影响不显著,或者变量之间存在多重共线的影响使其t值不显著。3计量经济学检验(1)多重共线性检验检验:由F=250.3763 (5,15)=4.62(显著性水平=0.05)表明模型从整体上看农业的总产值与解释变量间线形关系显著。这里采用简单相关系数矩阵法对其进行检验 :X2X3X4X5X6X2 1.000000 0.974555 0.977952 0.963494-0.707561X3 0.974555 1.000000 0.925922 0.907169-0.636056X4 0.97795
13、2 0.925922 1.000000 0.991186-0.666705X5 0.963494 0.907169 0.991186 1.000000-0.668959X6-0.707561-0.636056-0.666705-0.668959 1.000000从结果可知,之间存在高度相关修正:采用逐步回归法对其进行补救。根据以上分析,由于不符合经济意义,首先剔出。由于的t值最大,线形关系强,拟合程度最好,因此把作为基本变量。,将剩下的四个因素重新进行参数估计: 新模型估计结果:Dependent Variable: YMethod: Least SquaresDate: 04/30/05 T
14、ime: 12:57Sample: 1989 2003Included observations: 15VariableCoefficientStd. Errort-StatisticProb. C40826.1614791.732.7600670.0201X20.7584191.8547160.4089140.6912X310.015652.1511104.6560380.0009X4-0.0691420.132722-0.5209550.6137X6-1.7603650.515507-3.4148200.0066R-squared0.992440 Mean dependent var187
15、93.77Adjusted R-squared0.989416 S.D. dependent var8203.735S.E. of regression844.0038 Akaike info criterion16.57539Sum squared resid7123424. Schwarz criterion16.81141Log likelihood-119.3154 F-statistic328.1758Durbin-Watson stat1.444093 Prob(F-statistic)0.000000Y =40826.16+ X0.758419+ 10.01565+(-0.069
16、142)+(-1.760365) t= (2.760067) (0.408914) (4.656038) (0.520955) (-3.414820) =0.992440可以看出个因素的T统计量都得到了不同程度的改善。在前一模型的基础上剔出,拟合优度变差,但对C的t值影响很大,统计检验t=-0.799100,不显著。而且的系数为负,与经济意义相悖。Dependent Variable: YMethod: Least SquaresDate: 04/30/05 Time: 12:59Sample: 1989 2003Included observations: 15VariableCoeffic
17、ientStd. Errort-StatisticProb.C-6120.4427659.170-0.7991000.4411X24.6797942.0438192.2897300.0428X36.0162192.5319572.3761140.0368X4-0.2860730.163526-1.7493980.1080R-squared0.983624Mean dependent var18793.77Adjusted R-squared0.979157S.D. dependent var8203.735S.E. of regression1184.370Akaike info criter
18、ion17.21499Sum squared resid15430045Schwarz criterion17.40380Log likelihood-125.1124F-statistic220.2341Durbin-Watson stat1.460596Prob(F-statistic)0.000000剔出进行回归,不但经济意义违背而且T统计值较小,不能通过检验Dependent Variable: YMethod: Least SquaresDate: 04/30/05 Time: 13:01Sample: 1989 2003Included observations: 15Variab
19、leCoefficientStd. Errort-StatisticProb.C42613.8213585.493.1367140.0095X310.819350.84049912.872530.0000X4-0.0196500.052361-0.3752870.7146X6-1.8908790.389190-4.8585010.0005R-squared0.992313Mean dependent var18793.77Adjusted R-squared0.990217S.D. dependent var8203.735S.E. of regression811.4261Akaike in
20、fo criterion16.45864Sum squared resid7242535.Schwarz criterion16.64746Log likelihood-119.4398F-statistic473.3484Durbin-Watson stat1.382173Prob(F-statistic)0.000000剔出进行回归虽然拟合优度略有改善,但的T统计值为-0.166847,通不过检验,应剔出在做回归。而其他因素的统计值都较好。Dependent Variable: YMethod: Least SquaresDate: 04/30/05 Time: 13:00Sample:
21、1989 2003Included observations: 15VariableCoefficientStd. Errort-StatisticProb. C42252.9014046.333.0081100.0119X2-0.1227070.735446-0.1668470.8705X310.786301.5091097.1474590.0000X6-1.8889060.437375-4.3187370.0012R-squared0.992235 Mean dependent var18793.77Adjusted R-squared0.990117 S.D. dependent var
22、8203.735S.E. of regression815.5728 Akaike info criterion16.46884Sum squared resid7316750. Schwarz criterion16.65765Log likelihood-119.5163 F-statistic468.5100Durbin-Watson stat1.360316 Prob(F-statistic)0.000000综合考虑所得结果,选择含有 这三个因素的模型。再做剔出的模型的参数估计:Dependent Variable: YMethod: Least SquaresDate: 04/30/
23、05 Time: 13:06Sample: 1989 2003Included observations: 15VariableCoefficientStd. Errort-StatisticProb. C41516.5112783.363.2477000.0070X310.544100.39553826.657640.0000X6-1.8519090.361404-5.1242020.0003R-squared0.992215 Mean dependent var18793.77Adjusted R-squared0.990917 S.D. dependent var8203.735S.E.
24、 of regression781.8390 Akaike info criterion16.33803Sum squared resid7335267. Schwarz criterion16.47964Log likelihood-119.5352 F-statistic764.7022Durbin-Watson stat1.352428 Prob (F-statistic)0.000000可以看出拟合优度很好 F统计量的值在给定显著性水平=0.05的情况下也较显著,C ,的T统计值也很显著,表明对Y的影响也很显著。新模型估计结果:Y =41516.51+ 10.54410 +(-1.85
25、1909) t= (3.2477) (426.65764) (-5.124202) =0.992215(2)异方差检验检验:利用Goid_Quandt检验法检验模型是否存在异方差。将时间定义为19891993,然后对Y C用OLS法求的下列结果:Y=-6225.673+5.317281t= (-2.982843) (7.083533)=0.943584 =634718.8Dependent Variable: YMethod: Least SquaresDate: 04/30/05 Time: 13:12Sample: 1989 1993Included observations: 5Vari
26、ableCoefficientStd. Errort-StatisticProb. C-6225.6732087.161-2.9828430.0585X35.3172810.7506547.083533 0.0058R-squared0.943584 Mean dependent var8486.818Adjusted R-squared0.924779 S.D. dependent var1677.103S.E. of regression459.9706 Akaike info criterion15.38938Sum squared resid634718.8 Schwarz crite
27、rion15.23315Log likelihood-36.47344 F-statistic50.17643Durbin-Watson stat1.632631 Prob(F-statistic)0.005786将时间定义为19992003,然后对Y C用OLS法求的下列结果Y=-44209.20+16.62678t= (-5.018903) (8.034508)=0.955591 =777592.5Dependent Variable: YMethod: Least SquaresDate: 04/30/05 Time: 13:13Sample: 1999 2003Included obs
28、ervations: 5VariableCoefficientStd. Errort-StatisticProb. C-44209.208808.537-5.0189030.0152X316.626782.0694218.0345080.0040R-squared0.955591 Mean dependent var26539.42Adjusted R-squared0.940788 S.D. dependent var2092.227S.E. of regression509.1144 Akaike info criterion15.59240Sum squared resid777592.
29、5 Schwarz criterion15.43617Log likelihood-36.98099 F-statistic64.55332Durbin-Watson stat1.966867 Prob(F-statistic)0.004026=777952.5/634718.8=1.22566481409 小于(4,4)=6.39 接受不存在异方差将时间定义为19891993,然后对Y C 用OLS法求的下列结果:Y=-20445.55+0.864900t= (-0.473093) (0.669589)=0.130018 =9787897Dependent Variable: YMethod
30、: Least SquaresDate: 04/30/05 Time: 13:19Sample: 1989 1993Included observations: 5VariableCoefficientStd. Errort-StatisticProb. C-20445.5543216.71-0.4730930.6684X60.8649001.2916890.6695890.5510R-squared0.130018 Mean dependent var8486.818Adjusted R-squared-0.159975 S.D. dependent var1677.103S.E. of r
31、egression1806.276 Akaike info criterion18.12510Sum squared resid9787897. Schwarz criterion17.96887Log likelihood-43.31274 F-statistic0.448349Durbin-Watson stat0.815079 Prob(F-statistic)0.551047将时间定义为19992003,然后对Y C 用OLS法求的下列结果Y=126537.0+(-3.097615)t= (48.84461) (-38.60686)=0.997991 =35171.96Dependen
32、t Variable: YMethod: Least SquaresDate: 04/30/05 Time: 13:18Sample: 1999 2003Included observations: 5VariableCoefficientStd. Errort-StatisticProb. C126537.02590.60248.844610.0000X6-3.0976150.080235-38.606860.0000R-squared0.997991 Mean dependent var26539.42Adjusted R-squared0.997322 S.D. dependent va
33、r2092.227S.E. of regression108.2774 Akaike info criterion12.49644Sum squared resid35171.96 Schwarz criterion12.34022Log likelihood-29.24111 F-statistic1490.489Durbin-Watson stat2.434963 Prob(F-statistic)0.000038=0.000352467193491 小于(4,4)=6.39 接受不存在异方差利用WHITE检验法检验模型是否存在异方差。结果如下:White Heteroskedastici
34、ty Test:F-statistic0.34392 Probability0.873777Obs*R-squared2.406316 Probability0.790533Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 04/30/05 Time: 17:28Sample: 1989 2003Included observations: 15VariableCoefficientStd. Errort-StatisticProb. C-9.11E+081.56E+09-0.5824040.5746X3461
35、21.5269356.030.6649970.5227X32-1.1529751.207919-0.9545140.3648X3*X6-1.1820212.098834-0.5631800.5871X650954.9488666.680.5746800.5796X62-0.7165461.248717-0.5738250.5801R-squared0.160421 Mean dependent var489017.8Adjusted R-squared-0.306012 S.D. dependent var1172075.S.E. of regression1339457. Akaike in
36、fo criterion31.34260Sum squared resid1.61E+13 Schwarz criterion31.62582Log likelihood-229.0695 F-statistic0.343932Durbin-Watson stat2.515047 Prob(F-statistic)0.873777(5)=9.48773 2.406316,所以接受,表明模型中随机误差项不存在异方差。(3)自相关检验 检验:从模型设定来看,没有违背D-W检验的假设条件,因此可以用D-W检验来检验模型是否存在自相关。根据上表中估计的结果,由DW=1.352428 ,给定显著性水平=
37、0.05,查Durbin-Watson表,n=15,k=2,得=0.946 =1.543 因为DW统计量为1.352428 ,根据判定区域知位于无决定区域,不确定是否存在一阶正自相关,需要进行修正。修正:采用广义差分法对模型进行修正。 由DW=1.352428 ,根据=1-DW/2,计算出=0.373786。用GENR分别对,和Y作广义差分。即: GENR DY= Y-0.4894*Y(-1) GENR D= X3-0.4894(-1)GENR D= X6-0.4894(-1) 新修正为: DY=C+D+D+uDependent Variable: DYMethod: Least Square
38、sDate: 05/01/05 Time: 12:36Sample(adjusted): 1990 1993Included observations: 4 after adjusting endpointsVariableCoefficientStd. Errort-StatisticProb. C19018.461293.82414.699420.0432DX34.8402810.17024328.431660.0224DX6-1.0403890.049918-20.842060.0305R-squared0.999733 Mean dependent var6037.017Adjuste
39、d R-squared0.999199 S.D. dependent var1105.154S.E. of regression31.28098 Akaike info criterion9.837603Sum squared resid978.5000 Schwarz criterion9.377324Log likelihood-16.67521 F-statistic1871.802Durbin-Watson stat2.946105 Prob(F-statistic)0.016342(4)确定模型 DY = 19018.46 + 4.84021*D +(-1.040389)*D=化肥施
40、用量(万吨)=农业从业人员(万人) 由于该模型的回归结果、t值以及F统计值均显著,且不存在计量经济学问题,因此最后定型为此。根据1989-2003年的数据建立的模型中可以看出每增加一万吨的化肥使农业增加值增长了4.84021亿元,每减少一万人的农业从业人员数可以是农业增加值增长1.040389,说明在我国的农村中存在大量的剩余劳动力。模型还可表示为=19018.46+4.84021-1.809202735+ ( -1.0140389 )+0.388882842+0.373786GENR =4.84021+(-1.0140389 )+( -1.809202735)+0.388882842则模型变
41、为:=26245.95+1.712319+0.491976Dependent Variable: YMethod: Least SquaresDate: 06/06/05 Time: 12:49Sample(adjusted): 1990 2003Included observations: 14 after adjusting endpointsVariableCoefficientStd. Errort-StatisticProb. C26245.954065.2126.4562310.0000M1.7123190.2886635.9319010.0001Y(-1)0.4919760.0835535.8881660.0001R-squared0.992232 Mean dependent var19669.41Adjusted R-squared0.990819 S.D. dependent var7751.918S.E. of regression742.7666 Akaike info criterion16.24605Sum squared resid6068725. Schwarz criterion16.38299Log likelihood-110.7224 F-statistic702.4898Durbin-Watson stat1.805031 Prob