《氟废水处理方法汇总情况.doc》由会员分享,可在线阅读,更多相关《氟废水处理方法汇总情况.doc(26页珍藏版)》请在三一办公上搜索。
1、含氟废水处理大汇总氟是一种微量元素,饮用水含氟量在0.40.6mg/L的水对人体无害有益,而长期饮用含量大于1.5mg/L的高氟水则会给人体带来不利影响,严重的会引起氟斑牙和氟骨病。我国某些地区特殊的地球化学特征使该区域水源含氟量大于1.0mg/L,从而造成地方性氟中毒。我国有将近l亿人生活在高氟水地区,目前在我国氟受害者多达几千万人。除个别地区自然因素外,大量的高氟工业废水的排放是主要因素之一。随着我国工业的迅猛发展,含氟废水的排放量将会增加,因此含氟废水的排放必须受到严格控制。某些高浓度含氟工业废水的排放,更对人们身体健康造成很大威胁,所以必须对含氟工业废水加以处理。1973年颁布的工业三
2、废排放试行标准(GBJ4-73)中规定,氟的无机化合物排放标准为10mg/L(以F-计)。1988年颁布的污水综合排放标准(GB8789-88)中规定,新扩改企业对外排放含氟废水,氟化物不得超过10mg/L(向二级污水处理厂排放除外)。此废水带出物是以氟化钙计,那么1988年的标准比1973年的标准严格了一倍以上。 目前含氟废水的主要处理方法是化学沉淀法和吸附法,这两种方法存在处理后出水很难达标、泥渣沉降缓慢且脱水困难等缺点。 冷冻法、离子交换树脂法、超滤法、电渗析等,因为处理成本高,除氟效率低,多停留在实验阶段,很少推广应用于工业含氟废水治理。 笔者认为,应围绕沉淀法吸附法为主体工艺,后续深
3、处理工艺,提高效率,节约成本,应对含氟废水的特点,开发合理工艺。化学沉淀法一、 Ca(OH)2+PAC+PAM+ 吸收塔法对于高浓度含氟工业废水,一般采用钙盐沉淀法,即向废水中投加石灰,使氟离子与钙离子生成CaF2沉淀而除去。该工艺具有方法简单、处理方便、费用低等优点,但存在处理后出水很难达标、泥渣沉降缓慢且脱水困难等缺点。 氟化钙在18 时于水中的溶解度为16.3 mg/L,按氟离子计为7.9 mg/L,在此溶解度的氟化钙会形成沉淀物。氟的残留量为1020 mg/L时形成沉淀物的速度会减慢。当水中含有一定数量的盐类,如氯化钠、硫酸钠、氯化铵时,将会增大氟化钙的溶解度。因此用石灰处理后的废水中
4、氟含量一般不会低于2030 mg/L。石灰的价格便宜,但溶解度低,只能以乳状液投加,由于生产的CaF2沉淀包裹在Ca(OH)2颗粒的表面,使之不能被充分利用,因而用量大。投加石灰乳时,即使其用量使废水pH达到12,也只能使废水中氟离子浓度下降到15 mg/L左右,且水中悬浮物含量很高。当水中含有氯化钙、硫酸钙等可溶性的钙盐时,由于同离子效应而降低氟化钙的溶解度。 含氟废水中加入石灰与氯化钙的混合物,经中和澄清和过滤后,pH为78时,废水中的总氟含量可降到10 mg/L左右。为使生成的沉淀物快速聚凝沉淀,可在废水中单独或并用添加常用的无机盐混凝剂(如三氯化铁)或高分子混凝剂(如聚丙烯酰胺)。为不
5、破坏这种已形成的絮凝物,搅拌操作宜缓慢进行,生成的沉淀物可用静止分离法进行固液分离。在任何pH下,氟离子的浓度随钙离子浓度的增大而减小。在钙离子过剩量小于40 mg/L时,氟离子浓度随钙离子浓度的增大而迅速降低,而钙离子浓度大于100 mg/L时氟离子浓度随钙离子浓度变化缓慢。因此,在用石灰沉淀法处理含氟废水时不能用单纯提高石灰过剩量的方法来提高除氟效果,而应在除氟效率与经济性二者之间进行协调考虑,使之既有较好的除氟效果又尽可能少地投加石灰。这也有利于减少处理后排放的污泥量。 由于氟化物不是废水中唯一要被除去的污染物,因此要根据实际情况选择合适的处理方法。例如含氟废水中溶有碳酸钠、重碳酸钠时,
6、直接投加石灰或氯化钙,除氟效果会降低。这是因为废水中存在着一定量的强电解质,产生盐效应,增加了氟化钙的溶解度,降低除氟效果。其有效的处理方法是先用无机酸将废水pH调到68之间,再与氯化钙等反应就可有效地除去氟离子。若废水中含有磷酸根离子,则先用石灰处理至pH大于7,再将沉淀物分离出来。对于成分复杂的含氟废水,可用加酸反调pH法,即首先在废水中加入过量的石灰,使pH11,当钙离子不足时补加氯化钙,搅拌20 min,然后加盐酸使废水pH反调到 7.58,搅拌20 min,加入絮凝剂,搅拌后放置30 min,然后底部排泥,上清液排放。 近年来有些研究者提出在投加钙盐的基础上联合使用镁盐、铝盐、磷酸盐
7、等工艺,处理效果比单纯加钙盐效果好。如阎秀芝提出氯化钙与磷酸盐除氟法,其工艺过程是:先在废水中加入氯化钙,调pH至9.811.8,反应0.5 h,然后加入磷酸盐,再调pH为6.37.3,反应45 h,最后静止澄清45 h,出水氟质量浓度为5 mg/L左右。钙盐、磷酸盐、氟三者的摩尔比大约为(1520)21。文献中报道了一种用氯化钙和三氯化铝联合处理含氟水的方法,其工艺过程是:先在废水中投加氯化钙,搅溶后再加入三氯化铝,混合均匀,然后用氢氧化钠调pH至78。沉降15 min后砂滤,出水氟离子浓度为4 mg/L。氯化钙、三氯化铝和氟的摩尔比为(0.81)(22.5)1。钙盐联合使用镁盐、铝盐、磷酸
8、盐后,除氟效果增加,残氟浓度降低,主要是因为形成了新的更难溶的含氟化合物,剩余污泥和运行费用仅为原来的1/10。如钙盐与磷酸盐合用时,会生成Ca5(PO4)3F沉淀;氯化钙与三氯化铝合用时形成有钙、铝、氟组成的络合物沉淀,其具体组成和结构尚待进一步研究。二、吸附剂种类吸收法:1996年,德国的一项专利是利用硅胶来除去水中的氟。1997年曰本的另一专利中报道,一种除氟方法是在水中加入ca盐,使得F与Ca形成CaF2,再加入AL(OH)3胶体等。这也是利用吸附法除氟。同年日本又以AL3+与Ca2+共同作用,调整pH至适宜值,可大量除氟。美国、台湾、印度对此也进行了许多研究,如美国于1991成功的制
9、得多孔微粒氧化锆氟吸附剂。台湾用一种已用的催化剂作为除氟剂,取得了很好的效果。I996年,印度同样得到吸附氟离子效果很好的改性氟石。国内这几年也制得了许多效果很好的氟吸附剂。如改性氧化铝吸附剂、两性淀粉吸附剂、负载镧改性纤维吸附剂等等,处理台氟废水具有明显优于其他氟处理剂的特点-根据所用的原料,可以将氟吸附剂分为铝吸附剂、天然高分子吸附剂、稀土吸附剂和其他类吸附荆。吸附是发生在两相界面处的成分浓缩,吸附剂之所以具有良好的吸附特性,主要是由于它有密集的细孔结构和巨大的比表面积,或具有可以与吸附质分子形成化学键的基团,为此,吸附行为可分为物理吸附与化学吸附。一般吸附剂的吸附机理都是与Langmui
10、r机理有关的。利用吸附剂表面与吸附质之间的作用力来完成的。下面就它们的机理作一介绍。1.含铝类吸附剂吸附机理活性氧化铝之所具有较好的吸附性能,这与它的结构有关。表面干燥的氧化铝表面第一层由氧离子构成,氧离子与第二铝离子相连接,其量只为第二层氧离子的一半。因此,有一半的铝离子将暴霹于表面上,第二层的氧离子正好符合AI2O3的AL/O比,与氟离于结合力较强。X光电子能谱的研究表明,活性氧化铝对F的吸附是通过对NaF的化学吸附米实现的: A12O3 +Na+ FAL2O3NaF在一些水合的A12O3表面,F-可发生氢键吸附。在物理吸附中,铝盐水解生成的AL3(OH)4 5+、AL7(oH)174+和
11、AL13O4(oH)177+等高价阳离子,通过静电作用吸附F-。铝盐除氟常常与钙盐相结台,主要是因形成了难溶的含氟化合物,如CaCI2和ALCL3合用时,形成一种由Ca、AL及F组成的络台物,但是其具件组分和结构尚特进一步研究。分子筛又称沸石,是一种水合硅酸盐类,分子筛是一种笼形孔洞骨架的晶体,经脱水后空间十分丰富,具有很大的内表面积,可以吸附相当数量的吸附质。同时内晶表面高度极化,晶体空隙内部具有强大的静电场起作用,微孔分布单一均匀,并且有普通分子般大小,宜于吸附分离不物质的分子筛吸附的显著特征之一就足它具有选择吸附性能。这种选择吸附性能有两种情况:一种是单纯根据分子的形状与大小来筛分子:另
12、一种是根据分子极性、不饱和度、极化率来选择吸附。此外分于筛还具有在低分压(低浓度)及较高温度下吸附能力强的优点。2.天然高分子除氟机理一般高分子型吸附剂是两性的。两性高分于水处理剂可分为两性淀粉、两性纤维素、两性植物胶。对于改性原料的选择世界各国依据各自的自然条件,侧重点不同。我国目前改性植物胶为主要的水处理剂。其中两性淀粉的制各是淀粉葡糖糖苷中羟基的反应活性,将其分别与阴、阳离子醚化剂反应得到的。阴离子一般是有羧基、磷酸基或磺酸基构成的;阳离子基团是季胺基团构成的。如最早制备的两性淀粉是用低取代度的阳离子淀粉与正磷酸进行热反应制成的。两性纤维素是以羧甲基纤维紊为原料,在碱性条件先与3-氯-2
13、-羟丙基三甲基氯化铵反应(或与三乙基氯化铵反应),可以得到含有羧甲基又有季铵盐基团的两性纤维素,这些活性基团增加了它的吸附力。两性型壳聚糖吸附剂足以甲壳素为原料,在碱性条件下,与一氯乙酸反应引入羧甲基,同时进行水解脱乙酰基,制成的两性壳聚糖,有优越的吸附效果的。含有许多根据壳聚糖的结构进行改性制成的各种两性壳聚糖,在水处理中发挥较好的效果。至于茶叶质铁吸附剂的制备是利用了酚醛树脂的反应原理,茶叶中台有许多酚基,用甲醛处理后就使得一部分酚基与甲醛反应生成结构复杂、分子庞大的多酚基、多羧基的化合物。减少茶多酚在水中的溶解度,茶叶质中的多酚基和多羧基与Fe3+络合,结合力很强的。F-是一种在无机离子
14、中与Fe3+络台很强的络台剂,可以将茶叶质中的络合力相对较弱的有机物取代了,从而被吸附。但是在茶叶质中的吸附机理较复杂,仍在进行深入研究中。3.稀土吸附剂除氟机理锆水合氧化物的离子交换与吸附性质是由其表面羟基相关的质子化反应引起的。但是太多数的稀土用作吸附剂都是将稀土负载在大表面积纤维状的物质上。因为纤维状吸附剂具有较大的比表面积和较强的机械强度,而稀土与F-的配位能力强。所以稀土金属氧化物对水中的氟离子具有较高的吸附容量,较强的吸附选择性。将它加载到纤维基体上可望得到集纤维本身特点与稀土元素对氟离子的高吸附容量及高选择性于一体的氟吸附剂。4.其他类吸附剂除氟机理各类吸附剂的踩氟机理与各自的体
15、系有关。如羟基磷酸钙对氟离子的吸附是通过对CaF2的化学吸附来实现的;氢氧化镁对氟离子的吸附机理与氢氧化铝相似。由于各种除氟剂除氟机理的复杂性,许多除氟机理还在研究中。三、铝盐絮凝沉淀法氟离子废水的絮凝沉淀法常用的絮凝剂为铝盐。铝盐投加到水中后,利用Al3+与F- 的络合以及铝盐水解中间产物和最后生成的Al(OH)3(am)矾花对氟离子的配体交换、物理吸附、卷扫作用去除水中的氟离子。与钙盐沉淀法相比,铝盐絮凝沉淀法具有药剂投加量少、处理量大、一次处理后可达国家排放标准的优点。硫酸铝、聚合铝等铝盐对氟离子都具有较好的混凝去除效果。使用铝盐时,混凝最佳pH为6.47.2,但投加量大,根据不同情况每
16、 m3水需投加1501000 g,这会使出水中含有一定量的对人体健康有害的溶解铝。使用聚铝后,投加量可减少一半左右,絮凝沉淀的pH范围扩大到58 。聚铝的除氟效果与聚铝本身的性质有关,碱化度为75%的聚铝除氟最佳,投加量以水中F与 Al的摩尔比为0.7左右时最佳。铝盐絮凝沉淀法也存在着明显的缺点,即使用范围小,若含氟量大,混凝剂使用量多,处理费用较大,产生污泥量多;氟离子去除效果受搅拌条件、沉降时间等操作因素及水中SO42-,Cl-等阴离子的影响较大,出水水质不够稳定,这与目前对混凝除氟机理认识还很不够有关,研究絮凝除氟机理具有明显的现实意义。 铝盐絮凝去除氟离子机理比较复杂,主要有吸附、离子
17、交换、络合沉降三种作用机理。 (1)吸附。铝盐絮凝沉淀除氟过程为静电吸附,最直接的证据是AC或PAC含氟絮体由于吸附了带电荷的氟离子,正电荷被部分中和,相同pH条件下电位要比其本身絮体要低。另一证据是当水中SO42-,Cl-等阴离子的浓度较高时,由于存在竞争,会使絮凝过程中形成的Al(OH)3(am)矾花对氟离子的吸附容量显著减少。 铝盐絮凝除氟过程中生成的具有很大表面积的无定性的Al(OH)3(am)絮体,对氟离子产生氢键吸附。氟离子半径小,电负性强,这一吸附方式很容易发生,这已在铝盐除氟絮体红外光谱中得到证实。不管是化学吸附还是物理上的静电吸附,只要是离子吸附方式,就会使铝盐水解阳离子所带
18、的正电荷降低,从而使絮体的电位值下降。AC和 PAC含氟絮体的电位都比本身絮体的电位低,说明铝盐除氟过程中离子吸附是一重要的作用方式。 XPS试验表明,絮体Al(OH)3(am)对NaF和HF的吸附为分子吸附。这两种吸附的具体方式尚有待于进一步研究,最有可能的是氟离子先以氢键或静电作用方式吸附到絮体上,然后钠离子和氢离子作为电荷平衡离子吸附到上面而构成分子吸附。 (2)离子交换。氟离子与氢氧根的半径及电荷都相近,铝盐絮凝除氟过程中,投加到水中的 Al13O4(OH)147+等聚羟阳离子及其水解后形成的无定性Al(OH)3(am)沉淀,其中的OH-与F-发生交换,这一交换过程是在等电荷条件下进行
19、的,交换后絮体所带电荷不变,絮体的电位也不会因此升高或降低,但这一过程中释放出的OH-,会使体系的pH升高,说明离子交换也是铝盐除氟的一个重要的作用方式。 (3)络合沉淀。F-能与Al3+等形成从AlF2+,AlF2+,AlF3到 AlF63-共6种络合物,溶液化学平衡的计算表明,在F-浓度为110-4110-2 mol/L的铝盐混凝除氟体系中,pH为56的情况下,主要以AlF2+, AlF3,AlF4- 和AlF52-等形态存在,这些铝氟络合离子在絮凝过程中会形成铝氟络合物 (AlFx(OH)(3-x)和Na(x-3)AlFx)或夹杂在新形成的 Al(OH)3(am)絮体中沉降下来,絮体的I
20、R和XPS谱图最终观察到的铝氟络离子AlFx(3-x)+一部分是络合沉降作用的结果,另一部分则可能是离子交换的产物。四、戈尔薄膜液体过滤器法钢厂在生产不锈钢板、带、管等产品时,需用HF-HNO3混合酸对不锈钢材表面进行酸洗处理,在此过程因冲洗产生大量酸性含氟废水,其pH值在2左右,主要成分有氟离子和Fe、Cr、Ni、Mn等重金属离子。目前该类废水主要采用石灰法中和混凝沉淀处理,由于生成的氟化钙溶度积较大,采用常规的斜板(管)沉淀池或平流沉淀池氟化物沉淀不完全,出水氟离子浓度在20 mg/L左右,无法达标。若将该水回用,往往因为水中残留较多的氟离子和铁离子造成不锈钢产品表面黄斑,影响产品外观质量
21、。上海五钢(集团)有限公司钢管分公司现年产不锈钢管5000余吨,在用HF-HNO3混合酸进行表面酸洗处理中平均排出酸性含氟废水1000 t/d左右。该公司于1988年建成一套40 m3/h的含氟废水处理设施,采用电石渣悬浊液中和,碱式氯化铝混凝沉淀,两级斜板沉淀池去固处理工艺。经近10年运行,出水氟离子浓度始终未能达标。为此,在采用戈尔薄膜液体过滤器处理合金钢酸洗冲洗水获得成功的基础上,试用高效的戈尔薄膜液体过滤器,对经电石渣悬浊液中和的废水进行固液分离,探索其去除氟离子和重金属离子的可行性及运行条件。废水来源与水质废水水样采自五钢钢管分公司酸洗车间冲洗废水集水池。废水水质指标见表1。pHF/
22、mg*L1Fe/mg*L1Cr/mg*L1Ni/mg*L1Mn/mg*L11.921475.41823.0150.90158.8012.91 采用戈尔薄膜液体过滤器处理含氟废水的试验处理效果与五钢现有含氟废水处理系统沉淀池出水分析结果分别列在表2和表3。 表 2戈尔过滤器数据项目pHF/mg*L1Fe/mg*L1Cr/mg*L1Ni/mg*L1Mn/mg*L1SS(中和后)/mg*L1原水水质1.921475.41823.0150.9158.812.917450过滤器1号8.909.400.2090.0560.1260.08612出水(膜孔0.5 m)2号 3号8.709.208.369.40
23、0.1340.2790.0460.0450.1050.1010.0300.03587过滤器4号8.7910.780.2540.0460.1460.08424出水(膜孔1 m)5号6号9.008.9010.167.440.5340.8510.0400.0270.1020.1200.0340.0371815过滤器出水(膜孔1 m)7号8号8.609.209.609.400.2760.3360.0350.0420.1120.1070.0670.0452024适量助沉淀剂9号9.009.400.6720.0400.1100.04732 表 3混凝沉淀处理分析结果? 由表2可知,采用戈尔薄膜液体过滤器处
24、理中和后的废水,当膜孔选用0.5 m时,出水氟离子浓度低于10 mg/L,达到国家排放标准;当膜孔选用1 m时,出水氟离子浓度在10 mg/L左右,尚不能稳定达标,但加入适量助沉淀剂后,出水可稳定达标。由表3可知,采用常规中和混凝沉淀法处理含氟废水出水,氟离子浓度无法达标。 膜通量与过滤周期取2000 mL中和的废水,在0.080.09 MPa工作压力下通过0.007 m2戈尔薄膜滤料,选用孔径分别为0.5 m和1 m的戈尔薄膜滤料,过滤时每隔1 min左右精确记录流量,约10 min反吹一次,所得试验结果见图1。图1的试验条件为工作压力0.08 MPa,工作温度22 ,进液SS 7450 m
25、g/L。由图1可见,0.5 m和1 m的戈尔薄膜滤料在前5 min的平均膜通量分别为0.8 m3/(m2*h)和1.2 m3/(m2*h),以后膜通量减小,曲线趋于平缓,但每次反吹脱泥饼后仍可恢复良好膜通量特性,这是因为该滤料采用戈尔专有的膨体聚四氟乙烯薄膜制造技术制成的。具有表面摩擦因数低,单位膜面积成孔率高等特性,能始终保持较低过滤阻力和较高膜通量。因此,用戈尔薄膜滤料处理含氟废水,膜孔选用0.5 m,设计单位处理量0.8 m3/(m2*h),过滤压力0.080.10 MPa,过滤周期每5 min设定反吹一次。 排泥量及泥饼的水含量取10 L废水,每次1000 mL置于烧杯中,加含固量8
26、%10 %的电石渣悬浊液中和至pH值为9.0左右,用戈尔薄膜液体过滤器过滤,将滤饼置于经干燥称重的量杯内称重,然后烘干再次称重,结果见表4。废水水质出水水质处理水量/L湿泥重/g干泥重/gpHF/mg*L1SS(中和后)/mg*L1pHF/mg*L1SS/mg*L11.72147562438.99.77121036061.2从表4可得,每处理1 m3含氟废水产生湿渣36 kg,渣的水含率为83 %。湿渣的容重经量杯测算约为2,即每处理100 m3废水产生约1.8 m3污泥渣。结论(1) 不锈钢酸洗工序产生的酸性含氟废水可用电石渣悬浊液中和,即用戈尔薄膜液体过滤器固液分离处理法来处理。选用0.5
27、 m膜孔或选用1 m膜孔,另加适量助沉淀剂可使出水氟离子浓度和重金属离子浓度达到国家排放标准。(2) 采用戈尔薄膜液体过滤器处理含氟废水的运行条件,当进水SS为6000 mg/L左右、过滤压力0.80.10 MPa、膜孔选择0.5 m时,单位处理能力为0.8 m3/(m2*h),出泥水含率83 %,排泥量0.018 m3/m3废水,折干排泥量6.12 kg/m3废水。五、深度处理法(主要介绍锆金属氧化物的水化合物:含氟废水主要是通过添加钙盐形成难溶盐C a F 2的方法进行处理的。随着废水排放标准的提高,用钙盐沉淀法处理后的废水往往需要进一步的处理。滤层吸附和离子交换法是迄今为止最主要的深化处
28、理技术,其吸附剂主要有:活性氧化铝、骨炭、沸石、磷灰石等。但由于其吸附容量低、再生工艺复杂、机械稳定性差等缺点,限制了它们的广泛应用。国外大量的基础研究表明,某些金属的水合氧化物具有较高的吸附阴阳离子的能力。吸附处理的对象主要为水中的F-、H2AsO4、 HAsO42-。、 H2PO4-、HPO4-, 等离子及其它许多金属离子, 如CrO42-、Mn2+等。有研究表明:锆盐对氟的去除效果较好,但成本太高,不能被直接利用。因此,我们采用火力发电厂废树脂为基体,以锆盐浸渍基体 ,在一定条件下使其水解,制得由锆水合氧化物负载的吸附剂。利用该吸附剂处理含氟水样,具有吸附容量大、使用寿命长、可再生等优点
29、。对于处理高氟饮水和含氟工业废水,特别是对于火电厂含氟废水的深度处理,具有较好的应用前景。载体树脂为火力发电厂产生的废树脂。氟化钠、氧氯化锆、硼酸、氯化钙、氯化镁、硫酸钠、硝酸钠、氯化钠等试剂均为分析纯。 将一定量的树脂载体浸渍于一定浓度的氧氯化锆溶液中,水解一段时间后使用。制备负载树脂的过程中,在相同的实验条件下选用不同的锆浓度条件制备负载树脂所得的树脂分别用于进行静态吸附试验,得到在C为01mol/L时各树脂的平衡吸附量q图l列出了制备负载树脂时不同锆浓度对q的影响当锆的浓度为0.08、0.1、0.3、0.5mol/L时,q依次明显增加当锆的浓度为2、4mol/L时,q增加不显著考虑到实际
30、操作成本以及药品过量时会造成浪费,在制备负载树脂时,选择锆的浓度为05mol/L。脱附试验 该负载树脂吸附氟离子后,对其进行静态脱附试验,结果如图。pH值越高,脱附率越高,脱附速度越快。其中,pH值为12.0、12.5条件下,20min时脱附率已达95%以上。考虑到实际操作选择pH值为12.0进行脱附。动态吸附试验 采用双柱吸附,模拟火电厂含氟废水成分如下:C(F-):10 mg/L,CB3+:200 mg/L,Cca2+:100 mg/L,CMg2:200 mg/L,Cso42-=5 500 mg/L Ccl-: 4 000mgiL,其流向为经过1柱流向2柱。动态吸附试验进行了两个周期,结果
31、如图运行第一周期时,1柱和2柱出水达到1mg/L时的通水倍数分别为410倍和l500倍;运行第二周期时,l柱和2柱出水达到1mg/L时的通水倍数分别为250倍和l050倍。负载树脂的吸附容量较大,但在第二周期运行时,负载树脂的吸附能力有所下降。动态脱附试验 第一周期运行完毕后,计算l柱和2柱的吸附量分别为4295.9和l943.2 mg,将负载树脂按步骤进行脱附,计算脱附量分别为4l17.6和l892.4 mg,脱附率分别为95.7%和97.3%。结果表明,1柱和2柱的脱附率均在95%以上,脱附效果较好。负载树脂吸附能力下降的原因可能是水合氧化锆在树脂附着的稳定性不够,发生了转移和流失,有待进
32、一步研究。 结论 制备负载树脂的适宜锆浓度为05mol/L,该负载树脂吸附和脱附的适宜pH值分别为4.0和12.0。采用该负载树脂对模拟电厂含氟废水进行了处理,取得了较好的除氟和再生效果;但是,在处理过程中,负载树脂的吸附性能有所下降。下一步研究应该考虑改善制备负载树脂时的水解条件,以期增加水合氧化锆在树脂上的稳定性。六、微电解器与芬顿反应器法(化学生物法)采用化学生化工艺处理含氟废水,具有投资少、操作简便、处理效率高、可综合回收污泥等特点,对于我国有机氟行业的废水处理具有现实意义。 含氟废水中的F-与矿石中的CaCO3反应生成CaF2沉淀,产生的污泥可以回收。 2HF+CaCO3 CaF2+
33、CO2+2H2 O废水处理流程图1废水处理工艺流程图根据该含氟废水的特性,其氟化物质量浓度在80100 mg/L左右,pH值在68范围之间。利用微电解器与芬顿反应器使废水中的有机氟断链,提高其可生化性,在除氟反应器中与石灰均匀反应生成氟化钙,并通过沉淀,从而大大降低氟化物在废水中的质量浓度。由于废水中含有一定量杂质,反应后的沉淀颗粒细小,沉降速率缓慢。为提高沉降速率,在沉淀阶段加人絮凝剂PAC来增大沉淀物的颗粒,使沉淀速率明显加快。经12 h后的自然沉淀,上层清液的送至SBR池进行生化处理后,水质达到了国家排放标准。七、钙盐一电凝聚和磷酸一钙沉淀法 本课题是研究高含氟废水的适用处理技术,以限制
34、城市地区氟的排放量。实验从小试研究开始,并完成中试。提出了钙盐一电凝聚和磷酸一钙沉淀法的工艺技术及有关参数。 电凝聚的混凝效果好、稳定、且易于控制,适于处理水量较小的工业含氟废水。 磷酸一钙盐沉淀是一种共沉淀方法,生成的沉淀物为Ca5(PO4)3F.nCaF2,反应速度快,沉淀效果好。 该法可直接用来对现有石灰沉淀法处理设施进行改造,可提高除氟率。 本成果特点:工艺较为简便易行,且沉渣量较少,有推广价值。 经专家鉴定认为,该研究成果达到了国内先进水平,如推广将可防止水体氟污染,具有显著的环境效益。八、原水分段注入法本技术特点: 1、 只需要进行简单的改造就可以提高现有设备的除氟效率。2、 通过
35、简单的工艺改造还可以实现氟、磷的同时去除。3、 方法简单、工艺可靠、既能提高处理效率又可减少加药量。 本系统有关参数:停留时间:晶种预制槽10-60分;反应槽20-40分。加药量:氟离子浓度+300mg/l钙离子。 含氟废水的处理存在出水水质不稳定、药剂使用量过多、污泥发生量多且含水率高等问题。特别是随着近年电子信息产业的迅猛发展以及国际环境标准ISO14000在世界范围内得到普遍的认可,从根本上解决含氟废水的处理问题已成为以大规模集成回路和液晶显示器等电子元件为代表的现代电子工业的一个重要的任务。 中国科学院生态环境研究中心研究人员在国外工作期间对常规的石灰法除氟技术进行了系统细致的研究,发
36、现氟化钙沉淀的生成不是单纯地受溶度积的支配。实验结果证明,氟化钙沉淀的生成实际上是氟化钙晶体的形成的过程,在反应初期,特别是在原水浓度相对较低的情况下,能否形成有充分数量的晶种是决定含氟废水处理成败的关键。研究发现,可以按照结晶理论通过设置预制晶种的步骤,也就是所谓的原水分段注入法(已申请日本专利)达到大幅度提高含氟废水处理效率的目的。由于该方法在不改变添加药品的种类,不增加药品使用量的情况下能显著提高除氟效率,该方法在旧厂改造以及新厂建设中都不断得到实际应用(在日本有十几例应用)。该技术曾在每年一度的日本半导体展览会上得到展出。九、READ-F树脂除氟法READ-F是一种表面涂有水氢氧化铈的
37、乙基乙烯醇聚合物。水合氢氧化铈(CeO2nH2O)是吸附剂。READ-F在极广的范围内,对氟离子都具有很强的选择吸附性。流过树脂塔的原水中氟离子的浓度可 降至0.8mg/L以下。不含任何有机溶剂也不含任何挥发性有机物质,不属于危险品分类。吸附采用动态吸附的方式,即原水以一定流速流过树脂塔便可完成除氟过程。 近几年,日本海水公司由海水除硼技术研发出来的READ-F树脂型除氟技术,其方法属吸附方式。除了具有传统吸附方式的操作简便,除氟效果稳定等优点外,其吸附量有质的提高。(参见表1)由于单位吸附量的显著提高,使得此法具有了较长再生周期、减小净水设备所占体积等特点。其具体物性可见下表:(参见表2)该吸附剂对于氟元素的吸附与再生的化学反应式:Ce-OH + F- Ce + OH- 吸附Ce-F+ F- NaOHCe-OH + NaF 再生 再生步骤为:清水第一次逆洗后用一定浓度比的NaOH脱氟,之后清水第二次逆洗后酸中和,最后清水进行第三逆洗。 综合来看,新的READ-F树脂型除氟法不但能对水中氟离子进行深度处理,且单位体积的吸附量大。从操作上看,除了需要调整PH为酸性外,基本不需其它处理即可使用,快速方便的动态吸附方式也可在短时间内处理大流量的高氟原水。除氟后的水也无污泥和二次污染问题,是一种新型、方便的除氟方法。十、超滤法(资料尚缺)。十一、电渗析法(资料尚缺)。