一元线性回归模型习题及答案精编版.doc

上传人:小飞机 文档编号:4198984 上传时间:2023-04-09 格式:DOC 页数:12 大小:692.50KB
返回 下载 相关 举报
一元线性回归模型习题及答案精编版.doc_第1页
第1页 / 共12页
一元线性回归模型习题及答案精编版.doc_第2页
第2页 / 共12页
一元线性回归模型习题及答案精编版.doc_第3页
第3页 / 共12页
一元线性回归模型习题及答案精编版.doc_第4页
第4页 / 共12页
一元线性回归模型习题及答案精编版.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《一元线性回归模型习题及答案精编版.doc》由会员分享,可在线阅读,更多相关《一元线性回归模型习题及答案精编版.doc(12页珍藏版)》请在三一办公上搜索。

1、一元线性回归模型一、单项选择题1、变量之间的关系可以分为两大类_。AA函数关系与相关关系 B线性相关关系和非线性相关关系C正相关关系和负相关关系D简单相关关系和复杂相关关系2、相关关系是指_。DA变量间的非独立关系 B变量间的因果关系C变量间的函数关系 D变量间不确定性的依存关系3、进行相关分析时的两个变量_。AA都是随机变量 B 都不是随机变量C 一个是随机变量,一个不是随机变量 D随机的或非随机都可以4、表示x和y之间真实线性关系的是_。CA B C D 5、参数的估计量具备有效性是指_。BA B C D 6、对于,以表示估计标准误差,表示回归值,则_。BA B C D 7、设样本回归模型

2、为,则普通最小二乘法确定的的公式中,错误的是_。D A B C D 8、对于,以表示估计标准误差,r表示相关系数,则有_。DA B C D 9、产量(X,台)与单位产品成本(Y,元/台)之间的回归方程为,这说明_。D A产量每增加一台,单位产品成本增加356元B产量每增加一台,单位产品成本减少1.5元C产量每增加一台,单位产品成本平均增加356元D产量每增加一台,单位产品成本平均减少1.5元10、在总体回归直线中,表示_。BA当X增加一个单位时,Y增加个单位B当X增加一个单位时,Y平均增加个单位C当Y增加一个单位时,X增加个单位D当Y增加一个单位时,X平均增加个单位11、对回归模型进行检验时,

3、通常假定 服从_。CA B C D 12、以Y表示实际观测值,表示回归估计值,则普通最小二乘法估计参数的准则是使_。D13、设Y表示实际观测值,表示OLS估计回归值,则下列哪项成立_。D14、用OLS估计经典线性模型,则样本回归直线通过点_。D15、以Y表示实际观测值,表示OLS估计回归值,则用OLS得到的样本回归直线满足_。A16、用一组有30个观测值的样本估计模型,在0.05的显著性水平下对的显著性作t检验,则显著地不等于零的条件是其统计量t大于_。DAt0.05(30) Bt0.025(30) Ct0.05(28) Dt0.025(28)17、已知某一直线回归方程的判定系数为0.64,则

4、解释变量与被解释变量间的线性相关系数为_。BA0.64B0.8C0.4D0.3218、相关系数r的取值范围是_。DAr-1Br1C0r1D1r119、判定系数R2的取值范围是_。CA R2-1B R21C0R21D1R2120、某一特定的X水平上,总体Y分布的离散度越大,即2越大,则_。AA预测区间越宽,精度越低B预测区间越宽,预测误差越小C预测区间越窄,精度越高D预测区间越窄,预测误差越大22、如果X和Y在统计上独立,则相关系数等于_。CA 1 B 1 C 0 D 23、根据决定系数R2与F统计量的关系可知,当R21时,有_。DA F1 B F-1 C F0 D F24、在CD生产函数中,_

5、。AA.和是弹性 B.A和是弹性C.A和是弹性 D.A是弹性25、回归模型中,关于检验所用的统计量,下列说法正确的是_。DA 服从 B 服从C 服从 D 服从26、在二元线性回归模型中,表示_。AA 当X2不变时,X1每变动一个单位Y的平均变动。B 当X1不变时,X2每变动一个单位Y的平均变动。C 当X1和X2都保持不变时,Y的平均变动。D 当X1和X2都变动一个单位时,Y的平均变动。27、在双对数模型中,的含义是_。DA Y关于X的增长量 B Y关于X的增长速度C Y关于X的边际倾向 D Y关于X的弹性26、根据样本资料已估计得出人均消费支出Y对人均收入X的回归模型为,这表明人均收入每增加1

6、,人均消费支出将增加_。CA 2 B 0.2 C 0.75 D 7.528、按经典假设,线性回归模型中的解释变量应是非随机变量,且_。AA 与随机误差项不相关 B 与残差项不相关C 与被解释变量不相关 D 与回归值不相关29、根据判定系数R2与F统计量的关系可知,当R2=1时有_。 CA.F=1 B.F=1 C.F= D.F=0 30、下面说法正确的是_。 DA.内生变量是非随机变量 B.前定变量是随机变量 C.外生变量是随机变量 D.外生变量是非随机变量 31、在具体的模型中,被认为是具有一定概率分布的随机变量是_。AA.内生变量 B.外生变量 C.虚拟变量 D.前定变量 32、回归分析中定

7、义的_。BA.解释变量和被解释变量都是随机变量 B.解释变量为非随机变量,被解释变量为随机变量 C.解释变量和被解释变量都为非随机变量 D.解释变量为随机变量,被解释变量为非随机变量 33、计量经济模型中的被解释变量一定是_。CA控制变量 B政策变量C内生变量 D外生变量二、多项选择题1、指出下列哪些现象是相关关系_。ACDA家庭消费支出与收入 B商品销售额与销售量、销售价格C物价水平与商品需求量 D小麦高产与施肥量E学习成绩总分与各门课程分数2、一元线性回归模型的经典假设包括_。ABCDEA B C D E 3、以Y表示实际观测值,表示OLS估计回归值,e表示残差,则回归直线满足_。ABE4

8、、表示OLS估计回归值,u表示随机误差项,e表示残差。如果Y与X为线性相关关系,则下列哪些是正确的_。AC5、表示OLS估计回归值,u表示随机误差项。如果Y与X为线性相关关系,则下列哪些是正确的_。BE6、回归分析中估计回归参数的方法主要有_。CDEA相关系数法 B方差分析法C最小二乘估计法 D极大似然法E矩估计法7、用OLS法估计模型的参数,要使参数估计量为最佳线性无偏估计量,则要求_。ABCDEA B C D 服从正态分布 EX为非随机变量,与随机误差项不相关。8、假设线性回归模型满足全部基本假设,则其参数的估计量具备_。CDEA可靠性 B合理性C线性 D无偏性E有效性9、普通最小二乘估计

9、的直线具有以下特性_。ABDEA 通过样本均值点B C D E 10、由回归直线估计出来的值_。ADEA是一组估计值 B是一组平均值C是一个几何级数 D可能等于实际值YE与实际值Y的离差之和等于零11、反映回归直线拟合优度的指标有_。A相关系数 B回归系数C样本决定系数 D回归方程的标准差E剩余变差(或残差平方和)12、对于样本回归直线,回归变差可以表示为_。ABCDEA B C D E 13对于样本回归直线,为估计标准差,下列决定系数的算式中,正确的有_。ABCDEA B C D E 14、下列相关系数的算式中,正确的有_。ABCDEA B C D E 15、判定系数R2可表示为_。BCEA

10、 B C D E 16、线性回归模型的变通最小二乘估计的残差满足_。ACDEA B C D E 17、调整后的判定系数的正确表达式有_。BCDA B C D E 18、对总体线性回归模型进行显著性检验时所用的F统计量可表示为_。BCA B C D E 三、名词解释函数关系与相关关系线性回归模型总体回归模型与样本回归模型最小二乘法高斯马尔可夫定理总变量(总离差平方和)回归变差(回归平方和)剩余变差(残差平方和)估计标准误差样本决定系数相关系数显著性检验t检验经济预测点预测区间预测拟合优度残差四、简答1、在计量经济模型中,为什么会存在随机误差项?答:模型中被忽略掉的影响因素造成的误差;模型关系认定

11、不准确造成的误差;变量的测量误差;随机因素。这些因素都被归并在随机误差项中考虑。因此,随机误差项是计量经济模型中不可缺少的一部分。2、古典线性回归模型的基本假定是什么?答:零均值假定。即在给定xt的条件下,随机误差项的数学期望(均值)为0,即。同方差假定。误差项的方差与t无关,为一个常数。无自相关假定。即不同的误差项相互独立。解释变量与随机误差项不相关假定。正态性假定,即假定误差项服从均值为0,方差为的正态分布。3、总体回归模型与样本回归模型的区别与联系。答:主要区别:描述的对象不同。总体回归模型描述总体中变量y与x的相互关系,而样本回归模型描述所观测的样本中变量y与x的相互关系。建立模型的不

12、同。总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。模型性质不同。总体回归模型不是随机模型,样本回归模型是随机模型,它随着样本的改变而改变。主要联系:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。4、试述回归分析与相关分析的联系和区别。答:两者的联系:相关分析是回归分析的前提和基础;回归分析是相关分析的深入和继续;相关分析与回归分析的有关指标之间存在计算上的内在联系。两者的区别:回归分析强调因果关系,相关分析不关心因果关系,所研究的两个变量是对等的。对两个变量x与y而言,相关分析中:;但在回归分析中,和却是两个完全不

13、同的回归方程。回归分析对资料的要求是:被解释变量y是随机变量,解释变量x是非随机变量。相关分析对资料的要求是两个变量都随机变量。5、在满足古典假定条件下,一元线性回归模型的普通最小二乘估计量有哪些统计性质?答:线性,是指参数估计量和分别为观测值和随机误差项的线性函数或线性组合。无偏性,指参数估计量和的均值(期望值)分别等于总体参数和。有效性(最小方差性或最优性),指在所有的线性无偏估计量中,最小二乘估计量和的方差最小。6、简述BLUE的含义。答:在古典假定条件下,OLS估计量和是参数和的最佳线性无偏估计量,即BLUE,这一结论就是著名的高斯马尔可夫定理。7、对于多元线性回归模型,为什么在进行了

14、总体显著性F检验之后,还要对每个回归系数进行是否为0的t检验?答:多元线性回归模型的总体显著性F检验是检验模型中全部解释变量对被解释变量的共同影响是否显著。通过了此F检验,就可以说模型中的全部解释变量对被解释变量的共同影响是显著的,但却不能就此判定模型中的每一个解释变量对被解释变量的影响都是显著的。因此还需要就每个解释变量对被解释变量的影响是否显著进行检验,即进行t检验。五、综合题1、下表为日本的汇率与汽车出口数量数据,年度1986198719881989199019911992199319941995XY16866114563112861013858814558313557512756711

15、150210244694379X:年均汇率(日元/美元)Y:汽车出口数量(万辆)问题:(1)画出X与Y关系的散点图。(2)计算X与Y的相关系数。其中,(3)若采用直线回归方程拟和出的模型为 t值 1.2427 7.2797 R2=0.8688 F=52.99解释参数的经济意义。解答:(1)散点图如下:(2)=0.9321(3)截距项81.72表示当美元兑日元的汇率为0时日本的汽车出口量,这个数据没有实际意义;斜率项3.65表示汽车出口量与美元兑换日元的汇率正相关,当美元兑换日元的汇率每上升1元,会引起日本汽车出口量上升3.65万辆。2、已知一模型的最小二乘的回归结果如下:标准差(45.2) (

16、1.53) n=30 R2=0.31其中,Y:政府债券价格(百美元),X:利率(%)。回答以下问题:(1)系数的符号是否正确,并说明理由;(2)为什么左边是而不是Yi;(3)在此模型中是否漏了误差项ui;(4)该模型参数的经济意义是什么。答:(1)系数的符号是正确的,政府债券的价格与利率是负相关关系,利率的上升会引起政府债券价格的下降。(2)(3)(4)常数项101.4表示在X取0时Y的水平,本例中它没有实际意义;系数(4.78)表明利率X每上升一个百分点,引起政府债券价格Y降低478美元。3、估计消费函数模型得 t值 (13.1)(18.7)n=19 R2=0.81其中,C:消费(元)Y:收

17、入(元) 已知,。问:(1)利用t值检验参数的显著性(0.05);(2)确定参数的标准差;(3)判断一下该模型的拟合情况。答:(1)提出原假设H0:,H1:统计量t18.7,临界值,由于18.72.1098,故拒绝原假设H0:,即认为参数是显著的。(2)由于,故。(3)回归模型R2=0.81,表明拟合优度较高,解释变量对被解释变量的解释能力为81%,即收入对消费的解释能力为81,回归直线拟合观测点较为理想。4、已知估计回归模型得且,求判定系数和相关系数。答:判定系数:=0.8688相关系数:5、有如下表数据 日本物价上涨率与失业率的关系年份物价上涨率(%)失业率(%)U19860.62.819

18、870.12.819880.72.519892.32.319903.12.119913.32.119921.62.219931.32.519940.72.91995-0.13.2(1)设横轴是U,纵轴是,画出散点图。(2)对下面的菲力普斯曲线进行OLS估计。已知(3)计算决定系数。答:(1)散点图如下:(2)7、根据容量n=30的样本观测值数据计算得到下列数据:试估计Y对X的回归直线。8、表2-4中的数据是从某个行业5个不同的工厂收集的,请回答以下问题:表2-4总成本Y与产量X的数据Y8044517061X1246118(1)估计这个行业的线性总成本函数:(2)的经济含义是什么?(3)估计产量

19、为10时的总成本。9、有10户家庭的收入(X,元)和消费(Y,百元)数据如表25。表2510户家庭的收入(X)与消费(Y)的资料X20303340151326383543Y7981154810910(1)建立消费Y对收入X的回归直线。(2)说明回归直线的代表性及解释能力。(3)在95%的置信度下检验参数的显著性。(4)在95%的置信度下,预测当X45(百元)时,消费(Y)的置信区间。10、已知相关系数r0.6,估计标准误差,样本容量n=62。求:(1)剩余变差;(2)决定系数;(3)总变差。11、在相关和回归分析中,已知下列资料:(1)计算Y对绵回归直线的斜率系数。(2)计算回归变差和剩余变差

20、。(3)计算估计标准误差。12、已知:n=6,。(1)计算相关系数;(2)建立Y对的回归直线;(3)在5%的显著性水平上检验回归方程的显著性。13、根据对某企业销售额Y以及相应价格X的11组观测资料计算:(1)估计销售额对价格的回归直线;(2)销售额的价格弹性是多少?14、假设某国的货币供给量Y与国民收入X的历史如表26。表26某国的货币供给量X与国民收入Y的历史数据年份XY年份XY年份XY19852.05.019893.37.219934.89.719862.55.519904.07.719945.010.019873.2619914.28.419955.211.219883.6719924

21、.6919965.812.4(1)作出散点图,然后估计货币供给量Y对国民收入X的回归方程,并把回归直线画在散点图上。(2)如何解释回归系数的含义。(3)如果希望1997年国民收入达到15,那么应该把货币供给量定在什么水平?15、假定有如下的回归结果 其中,Y表示美国的咖啡消费量(每天每人消费的杯数),X表示咖啡的零售价格(单位:美元/杯),t表示时间。问:(1)这是一个时间序列回归还是横截面回归?做出回归线。(2)如何解释截距的意义?它有经济含义吗?如何解释斜率?(3)能否救出真实的总体回归函数?(4)根据需求的价格弹性定义: ,依据上述回归结果,你能救出对咖啡需求的价格弹性吗?如果不能,计算

22、此弹性还需要其他什么信息?解答:(1)这是一个时间序列回归。(图略)(2)截距2.6911表示咖啡零售价在每磅0美元时,美国平均咖啡消费量为每天每人2.6911杯,这个没有明显的经济意义;斜率0.4795表示咖啡零售价格与消费量负相关,表明咖啡价格每上升1美元,平均每天每人消费量减少0.4795杯。(3)不能。原因在于要了解全美国所有人的咖啡消费情况几乎是不可能的。(4)不能。在同一条需求曲线上不同点的价格弹性不同,若要求价格弹性,须给出具体的X值及与之对应的Y值。16、下面数据是依据10组X和Y的观察值得到的:(李子奈书P18),假定满足所有经典线性回归模型的假设,求(1),的估计值及其标准差;(2)决定系数;(3)对,分别建立95的置信区间。利用置信区间法,你可以接受零假设:吗?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号