高考数学复习二元一次不等式(组)与平面区域.doc

上传人:laozhun 文档编号:4239110 上传时间:2023-04-10 格式:DOC 页数:13 大小:923.50KB
返回 下载 相关 举报
高考数学复习二元一次不等式(组)与平面区域.doc_第1页
第1页 / 共13页
高考数学复习二元一次不等式(组)与平面区域.doc_第2页
第2页 / 共13页
高考数学复习二元一次不等式(组)与平面区域.doc_第3页
第3页 / 共13页
高考数学复习二元一次不等式(组)与平面区域.doc_第4页
第4页 / 共13页
高考数学复习二元一次不等式(组)与平面区域.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

《高考数学复习二元一次不等式(组)与平面区域.doc》由会员分享,可在线阅读,更多相关《高考数学复习二元一次不等式(组)与平面区域.doc(13页珍藏版)》请在三一办公上搜索。

1、二元一次不等式(组)与平面区域第1课时【教学目标】1知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域;2过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力;3情态与价值:通过本节课的学习,体会数学来源与生活,提高数学学习兴趣。【教学重点】用二元一次不等式(组)表示平面区域;【教学过程】讲授新课.探究二元一次不等式(组)的解集表示的图形(1)回忆、思考回忆:初中一元一次不等式(组)的解集所表示的图形数轴上的区间思考:在直角坐标系内,二元一次不等式(组)的解集表示什么图形?(2)探究从特殊到一般:先研究具体的二元一次不等式x-y6的解集所表示的图

2、形。如图:在平面直角坐标系内,x-y=6表示一条直线。平面内所有的点被直线分成三类:第一类:在直线x-y=6上的点;第二类:在直线x-y=6左上方的区域内的点;第三类:在直线x-y=6右下方的区域内的点。设点是直线x-y=6上的点,选取点,使它的坐标满足不等式x-y6,请同学们完成课本第93页的表格,横坐标x-3-2-10123点P的纵坐标点A的纵坐标并思考:当点A与点P有相同的横坐标时,它们的纵坐标有什么关系?根据此说说,直线x-y=6左上方的坐标与不等式x-y6有什么关系?直线x-y=6右下方点的坐标呢?学生思考、讨论、交流,达成共识:在平面直角坐标系中,以二元一次不等式x-y6的解为坐标

3、的点都在直线x-y=6的左上方;反过来,直线x-y=6左上方的点的坐标都满足不等式x-y6。因此,在平面直角坐标系中,不等式x-y6表示直线x-y=6右下方的区域;如图。直线叫做这两个区域的边界由特殊例子推广到一般情况:(3)结论:二元一次不等式Ax+By+C0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)4二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax+By+C=0同一侧的所有点(),把它的坐标()代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断A

4、x+By+C0表示直线哪一侧的平面区域.(特殊地,当C0时,常把原点作为此特殊点)【应用举例】例1 画出不等式表示的平面区域。解:先画直线(画成虚线).取原点(0,0),代入+4y-4,0+40-4=-40,原点在表示的平面区域内,不等式表示的区域如图:归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法。特殊地,当时,常把原点作为此特殊点。变式1、画出不等式所表示的平面区域。变式2、画出不等式所表示的平面区域。例2 画出不等式2xy60表示的平面区域.解:先画直线2xy60(虚线),把原点(0,0)代入2xy6,得060.因2xy60,说明原点不在要求的区域内,不等式2x

5、y60表示的平面区域与原点在直线2xy60的异侧,即直线2xy60的右上部分的平面区域. 学生课堂练习.(1)xy10.(2)2x3y60.(3)2x5y100.(4)4x3y12.例3 用平面区域表示.不等式组的解集。分析:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。解:不等式表示直线右下方的区域,表示直线右上方的区域,取两区域重叠的部分,如图的阴影部分就表示原不等式组的解集。归纳:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分。变式1、画出不等式表示的平面区域。变式2、由直线,和

6、围成的三角形区域(包括边界)用不等式可表示为 。例4 画出不等式组表示的平面区域.x3y60表示直线上及其右上方的点的集合.xy20表示直线左上方一侧不包括边界的点的集合.在确定这两个点集的交集时,要特别注意其边界线是实线还是虚线,还有两直线的交点处是实点还是空点.例5 画出不等式组表示的平面区域. 不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.解:不等式x-y+50表示直线x-y+5=0右上方的平面区域,x+y0表示直线x+y=0右上方的平面区域,x3左上方的平面区域,所以原不等式表示的平面区域如右图中的阴影部分.课堂练习作出下列二元一

7、次不等式或不等式组表示的平面区域.(1)x-y+10;(2)2x+3y-60;(3)2x+5y-100;(4)4x-3y-120;(5)如下图:合作探究 由上述讨论及例题,可归纳出如何由二元一次不等式(组)表示平面区域的吗?归纳如下:1.在平面直角坐标系中,平面内的所有点被直线l:x+y-1=0分成三类:(1)直线l上:(x,y)|x+y-1=0;(2)直线l的上方:(x,y)|x+y-10;(3)直线l的下方:(x,y)|x+y-10.对于平面内的任意一点P(x,y)的坐标,代入x+y-1中,得到一个实数,此实数或等于0,或大于0,或小于0.观察到所有大于0的点都在直线l的右上方,所有小于0

8、的点都在直线l的左下方,所有等于0的点在直线l上.2.一般地,二元一次不等式Ax+By+C0在平面直角坐标系中表示直线Ax+By+C=0的某一侧的所有的点组成的平面区域.直线画成虚线表示不包括边界.二元一次不等式Ax+By+C0表示的平面区域是直线Ax+By+C=0的某一侧的所有的点组成的平面区域.直线应画成实线.此时常常用“直线定界,特殊点定位”的方法.(当直线不过原点时,常常取原点;过原点时取坐标轴上的点)方法引导上述过程分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全可以由学生主动去探求新知,得出结论.课堂小结1.在平面直

9、角坐标系中,平面内的所有点被直线l分成三类:(1)直线l上;(2)直线l的上方;(3)直线l的下方.2.二元一次不等式ax+by+c0和ax+by+c0表示的平面区域.布置作业1.不等式x-2y+60表示的区域在x-2y+6=0的()A.右上方B.右下方C.左上方D.左下方2.不等式3x+2y-60表示的平面区域是()3.不等式组表示的平面区域是()4.直线x+2y-1=0右上方的平面区域可用不等式_表示.5.不等式组表示的平面区域内的整点坐标是_.6.画出(x+2y-1)(x-y+3)0表示的区域.二元一次不等式(组)与平面区域第2课时【教学目标】1知识与技能:巩固二元一次不等式和二元一次不

10、等式组所表示的平面区域;能根据实际问题中的已知条件,找出约束条件;2过程与方法:经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想;3情态与价值:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新。【教学重点】理解二元一次不等式表示平面区域并能把不等式(组)所表示的平面区域画出来;【教学难点】把实际问题抽象化,用二元一次不等式(组)表示平面区域。【教学过程】 复习引入二元一次不等式Ax+By+C0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)判断方法:由于对在直线Ax+By+C=0同一侧的所有点(x,

11、y),把它的坐标(x,y)代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C0表示直线哪一侧的平面区域.(特殊地,当C0时,常把原点作为此特殊点)。随堂练习11、画出不等式2+y-60表示的平面区域.2、画出不等式组表示的平面区域。3画出不等式x+4y4表示的平面区域. 解:先画直线x+4y-40(虚线),把原点(0,0)代入x+4y-4040,因为x+4y-40,说明原点在要求的区域内,不等式x+4y-40表示的平面区域与原点在直线x+4y-4=0的一侧,即直线x+4y-4=0的左下部分的平面区域.师

12、 在确定这两个点集的交集时,要特别注意其边界线是实线还是虚线,还有两直线的交点处是实点还是空点.4用平面区域表示不等式组的解集. 分析:由于所求平面区域的点的坐标要同时满足两个不等式,因此二元一次不等式组表示的平面区域是各个不等式表示的平面区域的交集,即各个不等式表示的平面区域的公共部分.解:不等式y-3x+12表示直线y=-3x+12下方的区域;不等式x2y表示直线上方的区域.取两个区域重叠的部分,下图中的阴影部分就表示原不等式组的解集.例1 某人准备投资1 200万元兴办一所完全中学.对教育市场进行调查后,他得到了下面的数据表格:(以班级为单位)学段班级学生数配备教师数硬件建设/万元教师年

13、薪/万元初中45226/班2/人高中40354/班2/人分别用数学关系式和图形表示上述限制条件. 若设开设初中班x个,高中班y个,根据题意,总共招生班数应限制在2030之间,所以应该有什么样的限制?20x+y30.考虑到所投资金的限制,又应该得到什么? 26x+54y+22x+23y1 200,即x+2y40.另外,开设的班数不能为负,则x0,y0.把上面四个不等式合在一起,得到用图形表示这个限制条件,请同学完成. 得到图中的平面区域(阴影部分). 例2一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨,硝酸盐18吨;生产1车皮乙种肥料的主要原料是磷酸盐1吨,硝酸盐15

14、吨.现库存磷酸盐4吨,硝酸盐66吨,在此基础上生产这两种混合肥料.列出满足生产条件的数学关系式,并画出相应的平面区域.若设x、y分别为计划生产甲、乙两种混合肥料的车皮数,则应满足什么样的条件? 满足以下条件 在直角坐标系中完成不等式组(*)所表示的平面区域. 课堂练习(1)(2)例3 某人准备投资 1 200万兴办一所完全中学,对教育市场进行调查后,他得到了下面的数据表格(以班级为单位):学段班级学生人数配备教师数硬件建设/万元教师年薪/万元初中45226/班2/人高中40354/班2/人分别用数学关系式和图形表示上述的限制条件。解:设开设初中班x个,开设高中班y个,根据题意,总共招生班数应限

15、制在20-30之间,所以有考虑到所投资金的限制,得到即 另外,开设的班数不能为负,则把上面的四个不等式合在一起,得到:用图形表示这个限制条件,得到如图的平面区域(阴影部分)例4 一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐18t;生产1车皮乙种肥料需要的主要原料是磷酸盐1t,硝酸盐15t,现库存磷酸盐10t、硝酸盐66t,在此基础上生产两种混合肥料。列出满足生产条件的数学关系式,并画出相应的平面区域。解:设x,y分别为计划生产甲乙两种混合肥料的车皮数,于是满足以下条件:在直角坐标系中可表示成如图的平面区域(阴影部分)。补充例题例1、画出下列不等式表示的区域(1) ;

16、(2) 分析:(1)转化为等价的不等式组; (2)注意到不等式的传递性,由,得,又用代,不等式仍成立,区域关于轴对称。解:(1)或矛盾无解,故点在一带形区域内(含边界)。(2) 由,得;当时,有点在一条形区域内(边界);当,由对称性得出。指出:把非规范形式等价转化为规范不等式组形式便于求解例2、利用区域求不等式组的整数解分析:不等式组的实数解集为三条直线,所围成的三角形区域内部(不含边界)。设,求得区域内点横坐标范围,取出的所有整数值,再代回原不等式组转化为的一元不等式组得出相应的的整数值。解:设,。于是看出区域内点的横坐标在内,取1,2,3,当1时,代入原不等式组有,得2,区域内有整点(1,-2)。同理可求得另外三个整点(2,0),(2,-1),(3,-1)。指出:求不等式的整数解即求区域内的整点是教学中的难点,它为线性规划中求最优整数解作铺垫。常有两种处理方法,一种是通过打出网络求整点;另一种是本题解答中所采用的,先确定区域内点的横坐标的范围,确定的所有整数值,再代回原不等式组,得出的一元一次不等式组,再确定的所有整数值,即先固定,再用制约。3.随堂练习21(1); (2); (3)2画出不等式组表示的平面区域

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公文档 > 其他范文


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号