《二次方程根的分布情况归纳(教师版).doc》由会员分享,可在线阅读,更多相关《二次方程根的分布情况归纳(教师版).doc(8页珍藏版)》请在三一办公上搜索。
1、二次方程根的分布与二次函数在闭区间上的最值归纳1、一元二次方程根的分布情况设方程的不等两根为且,相应的二次函数为,方程的根即为二次函数图象与轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件)表一:(两根与0的大小比较即根的正负情况)分布情况两个负根即两根都小于0两个正根即两根都大于0一正根一负根即一个根小于0,一个大于0大致图象()得出的结论大致图象()得出的结论综合结论(不讨论)表二:(两根与的大小比较)分布情况两根都小于即两根都大于即一个根小于,一个大于即大致图象()得出的结论大致图象()得出的结论综合结论(不讨论)表三:(根在区间上的分布)分布情况两根都在两根有且仅有一根在
2、(图象有两种情况,只画了一种)一根在,另一根在,大致图象()得出的结论或大致图象()得出的结论或综合结论(不讨论)根在区间上的分布还有一种情况:两根分别在区间外,即在区间两侧,(图形分别如下)需满足的条件是 (1)时,; (2)时,对以上的根的分布表中一些特殊情况作说明:(1)两根有且仅有一根在有以下特殊情况: 若或,则此时不成立,但对于这种情况是知道了方程有一根为或,可以求出另外一根,然后可以根据另一根在区间,从而可以求出参数的值。如方程在区间上有一根,因为,所以,另一根为,由得即为所求; 方程有且只有一根,且这个根在区间,即,此时由可以求出参数的值,然后再将参数的值带入方程,求出相应的根,
3、检验根是否在给定的区间,如若不在,舍去相应的参数。如方程有且一根在区间,求的取值围。分析:由即得出;由即得出或,当时,根,即满足题意;当时,根,故不满足题意;综上分析,得出或根的分布练习题例1、已知二次方程有一正根和一负根,数的取值围。解:由 即 ,从而得即为所求的围。例2、已知方程有两个不等正实根,数的取值围。解:由 或即为所求的围。例3、已知二次函数与轴有两个交点,一个大于1,一个小于1,数的取值围。解:由 即 即为所求的围。例4、已知二次方程只有一个正根且这个根小于1,数的取值围。解:由题意有方程在区间上只有一个正根,则 即为所求围。(注:本题对于可能出现的特殊情况方程有且只有一根且这个
4、根在,由计算检验,均不复合题意,计算量稍大)2、二次函数在闭区间上的最大、最小值问题探讨设,则二次函数在闭区间上的最大、最小值有如下的分布情况:即图象最大、最小值对于开口向下的情况,讨论类似。其实无论开口向上还是向下,都只有以下两种结论:(1)若,则,;(2)若,则,另外,当二次函数开口向上时,自变量的取值离开轴越远,则对应的函数值越大;反过来,当二次函数开口向下时,自变量的取值离开轴越远,则对应的函数值越小。二次函数在闭区间上的最值练习二次函数在闭区间上求最值,讨论的情况无非就是从三个方面入手:开口方向、对称轴以及闭区间,以下三个例题各代表一种情况。例1、函数在上有最大值5和最小值2,求的值
5、。解:对称轴,故函数在区间上单调。(1)当时,函数在区间上是增函数,故 ;(2)当时,函数在区间上是减函数,故 例2、求函数的最小值。解:对称轴(1)当时,;(2)当时,;(3)当时,改:1本题若修改为求函数的最大值,过程又如何?解:(1)当时,; (2)当时,。 2本题若修改为求函数的最值,讨论又该怎样进行? 解:(1)当时,;(2)当时, ,;(3)当时,;(4)当时, ,。 例3、求函数在区间上的最小值。解:对称轴(1)当即时,;(2)当即时,;(3)当即时,例4、讨论函数的最小值。解:,这个函数是一个分段函数,由于上下两段上的对称轴分别为直线,当,时原函数的图象分别如下(1),(2),(3)因此,(1)当时,; (2)当时,; (3)当时,