《中考数学压轴题旋转问题带答案.docx》由会员分享,可在线阅读,更多相关《中考数学压轴题旋转问题带答案.docx(12页珍藏版)》请在三一办公上搜索。
1、旋转问题考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。旋转性质-对应线段、对应角的大小不变,对应线段的夹角等于旋转角。注意旋转过程中三角形与整个图形的特殊位置。一、 直线的旋转CABNM(第1题)1、(2009年浙江省嘉兴市)如图,已知A、B是线段MN上的两点,以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC,设(1)求x的取值范围;(2)若ABC为直角三角形,求x的值;(3)探究:ABC的最大面积?2、(2009年河南)如图,在RtABC中,ACB=90,B=60,BC=2点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点
2、0作逆时针旋转,交AB边于点D.过点C作CEAB交直线l于点E,设直线l的旋转角为.(1)当=_度时,四边形EDBC是等腰梯形,此时AD的长为_;当=_度时,四边形EDBC是直角梯形,此时AD的长为_;(2)当=90时,判断四边形EDBC是否为菱形,并说明理由解:(1)当四边形EDBC是等腰梯形时,EDB=B=60,而A=30,根据三角形的外角性质,得=EDB-A=30,此时,AD=1;当四边形EDBC是直角梯形时,ODA=90,而A=30,根据三角形的内角和定理,得=90-A=60,此时,AD=1.5(2)当=90时,四边形EDBC是菱形=ACB=90,BCED,CEAB,四边形EDBC是平
3、行四边形在RtABC中,ACB=90,B=60,BC=2,A=30度,AB=4,AC=2,AO=在RtAOD中,A=30,AD=2,BD=2,BD=BC又四边形EDBC是平行四边形,四边形EDBC是菱形3、(2009年北京市)在中,过点C作CECD交AD于点E,将线段EC绕点E逆时针旋转得到线段EF(如图1)(1)在图1中画图探究:当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转得到线段EC2.判断直线C1C2与直线CD的位置关系
4、,画出图形并直接写出你的结论.(2)若AD=6,tanB=,AE=1,在的条件下,设CP1=,S=,求与之间的函数关系式,并写出自变量的取值范围.提示:(1)运用三角形全等,(2)按CP=CE=4将x取值分为两段分类讨论;发现并利用好EC、EF相等且垂直。4、(2009黑龙江大兴安岭)已知:在中,动点绕的顶点逆时针旋转,且,连结过、的中点、作直线,直线与直线、分别相交于点、(1)如图1,当点旋转到的延长线上时,点恰好与点重合,取的中点,连结、,根据三角形中位线定理和平行线的性质,可得结论(不需证明)图2图3图1(N)(2)当点旋转到图2或图3中的位置时,与有何数量关系?请分别写出猜想,并任选一
5、种情况证明二、 角的旋转5、(2009年中山)(1)如图1,圆心接中,、为的半径,于点,于点求证:阴影部分四边形的面积是的面积的(2)如图2,若保持角度不变,求证:当绕着点旋转时,由两条半径和的两条边围成的图形(图中阴影部分)面积始终是的面积的6、(2009襄樊市)如图,在梯形中,点是的中点,是等边三角形(1)求证:梯形是等腰梯形;(2)动点、分别在线段和上运动,且保持不变设求与的函数关系式;(3)在(2)中:当动点、运动到何处时,以点、和点、中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;当取最小值时,判断的形状,并说明理由ADCBPMQ606、(2009年重庆市)已
6、知:如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3过原点O作AOC的平分线交AB于点D,连接DC,过点D作DEDC,交OA于点E(1)求过点E、D、C的抛物线的解析式;(2)将EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的PCG是等腰三角形?若存在,请求出点Q的坐标
7、;若不存在,请说明理由6题图yxDBCAEEO7、(2009年邵阳市)如图,将RtABC(其中B34,C90)绕A点按顺时针方向旋转到AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角最小等于()A.56B.68C.124D.18034B1CBAC18、(2009年包头)如图,已知与是两个全等的直角三角形,量得它们的斜边长为10cm,较小锐角为30,将这两个三角形摆成如图(1)所示的形状,使点在同一条直线上,且点与点重合,将图(1)中的绕点顺时针方向旋转到图(2)的位置,点在边上,交于点,则线段的长为cm(保留根号)C(F)D图(2)9、(2009河池)如图9,的顶点坐标分别为若将
8、绕点顺时针旋转,得到,则点的对应点的坐标为1234567891234567OABCyx图910、(2009年郴州市)如图,桌面上平放着一块三角板和一把直尺,小明将三角板的直角顶点紧靠直尺的边缘,他发现无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,与的和总是保持不变,那么与的和是_度11、(2009年台州市)如图,三角板中,CAB三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为12、(2009年凉山州)将绕点逆时针旋转到使在同一直线上,若,则图中阴影部分面积为cm230CBA30(12题)13、(2009年郴州市)如图6,在下面的方格图中,将AB
9、C先向右平移四个单位得到AB1C1,再将AB1C1绕点A1逆时针旋转得到AB2C2,请依次作出AB1C1和AB2C2。图614、(2009年达州)如图7,在ABC中,AB2BC,点D、点E分别为AB、AC的中点,连结DE,将ADE绕点E旋转180得到CFE.试判断四边形BCFD的形状,并说明理由.15、(2009襄樊市)如图所示,在中,将绕点顺时针方向旋转得到点在上,再将沿着所在直线翻转得到连接(1)求证:四边形是菱形;(2)连接并延长交于连接请问:四边形是什么特殊平行四边形?为什么?ADFCEGBADGECB16、(2009年株洲市)如图,在中,将绕点沿逆时针方向旋转得到(1)线段的长是,的
10、度数是;(2)连结,求证:四边形是平行四边形;(3)求四边形的面积17、(2009烟台市)如图,直角梯形ABCD中,且,过点D作,交的平分线于点E,连接BE(1)求证:;(2)将绕点C,顺时针旋转得到,连接EG.求证:CD垂直平分EG.(3)延长BE交CD于点P求证:P是CD的中点即18、(2009年山西省)ADBECFADBECF在中,将绕点顺时针旋转角得交于点,分别交于两点(1)如图1,观察并猜想,在旋转过程中,线段与有怎样的数量关系?并证明你的结论;(2)如图2,当时,试判断四边形的形状,并说明理由;(3)在(2)的情况下,求的长AECFBD图1图3ADFECBADBCE图2F20、(2
11、009年常德市)图9图10图11图8如图9,若ABC和ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,AMN是等边三角形.(1)当把ADE绕A点旋转到图10的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;(2)当ADE绕A点旋转到图11的位置时,AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,ADE与ABC及AMN的面积之比;若不是,请说明理由FBADCEG图21、(2009东营)FBADCEG图已知正方形ABCD中,E为对角线BD上一点,过E点作EFBD交BC于F,连接DF,G为DF中点,连接EG,CG(1)求证:EG=CG;(2)将
12、图中BEF绕B点逆时针旋转45o,如图所示,取DF中点G,连接EG,CG问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由(3)将图中BEF绕B点旋转任意角度,如图所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)提示:考查三角形的中线、三角形全等、矩形的性质等。(2)作适当辅助线,构造全等三角形。也可连接GA,得GC=GA,过点G作AB的垂线,证GE=GA.DFBACE图22、(2009年甘肃庆阳)(8分)如图14,在平面直角坐标系中,等腰RtOAB斜边OB在y轴上,且OB4(1)画出OAB绕原点O顺时针旋转90后得到的三角
13、形;(2)求线段OB在上述旋转过程中所扫过部分图形的面积(即旋转前后OB与点B轨迹所围成的封闭图形的面积)DOBAxyCy=kx+1图22三、 四边形的旋转24、(2009年山东青岛市)如图边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转,则这两个正方形重叠部分的面积是ADCBE25、(2009呼和浩特)如图所示,正方形的边在正方形的边上,连接(1)求证:EFGDABC(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,说出旋转过程;若不存在,请说明理由26、(2009年济宁市)在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将
14、正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图).(1)求边在旋转过程中所扫过的面积;(2)旋转过程中,当和平行时,求正方形旋转的度数;OABCMN(3)设的周长为,在旋转正方形的过程中,值是否有变化?请证明你的结论.27、(2009年宁波市)(Q)BAOxP(图2)yQCBAOxP(图1)yCBAOyx(备用图)(第27题)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为,直线BC经过点,将四边形OABC绕点O按顺时针方向旋转度得到四边形,此时直线、直线分别与直线BC相交于点P、Q(1)四边形OABC的形状是,当时,的值是;(2)如图1
15、,当四边形的顶点落在轴正半轴时,求的值;如图,当四边形的顶点落在直线上时,求的面积(3)在四边形OABC旋转过程中,当时,是否存在这样的点P和点Q,使?若存在,请直接写出点P的坐标;若不存在,请说明理由提示:第(3)问,过点Q作QHOA于H,连接OQ,则QH=OC=OC,易证PQ=OP,设BP=x,BQ=2x;按旋转时点P在点B左、右两种情况分类讨论。28、(2009年湖北荆州)xyOA图A图xyO如图,已知两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形(菱形ABCD与菱形EFGH的位似比为21),BAD120,对角线均在坐标轴上,抛物线经过AD的中点M填空:点坐标为,D点坐标为
16、;操作:如图,固定菱形ABCD,将菱形EFGH绕O点顺时针方向旋转度角,并延长OE交AD于P,延长OH交CD于Q探究1:在旋转的过程中是否存在某一角度,使得四边形AFEP是平行四边形?若存在,请推断出的值;若不存在,说明理由;探究2:设AP,四边形OPDQ的面积为,求与之间的函数关系式,并指出的取值范围四、 抛物线的旋转29、(2009年宁德市)如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1(1)求P点坐标及a的值;(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点
17、B成中心对称时,求C3的解析式;(3) 如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180后得到抛物线C4抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标yxAOBPM图1C1C2C3图(1)yxAOBPN图2C1C4QEF图(2)抛物线C4由C1绕点x轴上的点Q旋转180得到,顶点N、P关于点Q成中心对,顶点P的为(-2,-5)可知点N的纵坐标为5,设点N坐标为(m,5),作PHx轴于H,作NGx轴于G,作PKNG于K,旋转中心Q在x轴上,EF=AB=2BH=6,FG=3,点F坐标为(m+3,0)H坐标
18、为(-2,0),K坐标为(m,-5),根据勾股定理得:PN2=NK2+PK2=m2+4m+104,PF2=PH2+HF2=m2+10m+50,NF2=52+32=34,2PNF=90时,PN2+NF2=PF2,解得m=44/3,Q点坐标为(19/3,0)当PFN=90时,PF2+NF2=PN2,解得m=10/3,Q点坐标为(2/3,0)PNNK=10NF,NPF90综上所得,当Q点坐标为(19/3,0)或(2/3,0)时,以点P、N、F为顶点的三角形是直角三角形30、(2009年四川凉山州)如图,已知抛物线经过,两点,顶点为(1)求抛物线的解析式;(2)将绕点顺时针旋转90后,点落到点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;yxBAOD(第30题)(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标