《鼓式制动器设计方案(设计方案说明书).doc》由会员分享,可在线阅读,更多相关《鼓式制动器设计方案(设计方案说明书).doc(65页珍藏版)》请在三一办公上搜索。
1、毕业设计设计说明书题 目 SC6408V 商 用 车 鼓式制动器总成设计 专业 车辆工程汽车工程)班级 2006级汽车一班 学 生 _ 廖 械 兵 指导老师_ 文 孝 霞 重庆交通大学2018年前 言1 本课题的目的和意义近年来,国内、外对汽车制动系统的研究与改进的大部分工作集中在通过对汽车制动过程的有效控制来提高车辆的制动性能及其稳定性,如ABS 技术等,而对制动器本身的研究改进较少。然而,对汽车制动过程的控制效果最终都须通过制动器来实现,现代汽车普遍采用的摩擦式制动器的实际工作性能是整个制动系中最复杂、最不稳定的因素,因此改进制动器机构、解决制约其性能的突出问题具有非常重要的意义。对于蹄鼓
2、式制动器,其突出优点是可利用制动蹄的增势效应而达到很高的制动效能因数,并具有多种不同性能的可选结构型式,以及其制动性能的可设计性强、制动效能因数的选择范围很宽、对各种汽车的制动性能要求的适应面广,至今仍然在除部分轿车以外的各种车辆的制动器中占主导地位。但是,传统的蹄鼓式制动器存在本身无法克服的缺点,主要表现于:其制动效能的稳定性较差,其摩擦副的压力分布均匀性也较差,衬片磨损不均匀;另外,在摩擦副局部接触的情况下容易使制动器制动力矩发生较大的变化,因此容易使左右车轮的制动力产生较大差值,从而导致汽车制动跑偏。对于钳盘式制动器,其优点在于:制动效能稳定性和散热性好,对摩擦材料的热衰退较不敏感,摩擦
3、副的压力分布较均匀,而且结构较简单、维修较简便。但是,钳盘式制动器的缺点在于:其制动效能因数很低驻留不动的机构。从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。汽车制动系统种类很多,形式多样。传统的制动系统结构型式主要有机械式、气动式、液压式、气液混合式。它们的工作原理基本都一样,都是利用制动装置,用工作时产生的摩擦热来逐渐消耗车辆所具有的动能,以达到车辆制动减速,或直至停车的目的。汽车制动系至少应有两套独立的制动装置,即行车制动装置
4、和驻车制动装置;重型汽车或经常在山区行驶的汽车要增设应急制动装置及辅助制动装置,牵引汽车应有自动制动装置等。 作为制动系的主要组成部分,在车辆上常用的传统蹄鼓式制动器包括领从蹄型、双领蹄型、双从蹄型、双向自增力型等不同的结构型式。3 鼓式制动器技术研究进展和现状长期以来,为了充分发挥蹄鼓式制动器的重要优势,旨在克服其主要缺点的研究工作和技术改进一直在进行中,尤其是对蹄鼓式制动器工作过程和性能计算分析方法的研究受到高度重视。这些研究工作的重点在于制动器结构和实际使用因素等对制动器的效能及其稳定性等的影响,取得了一些重要的研究成果,得到了一些比较可行、有效的改进措施,制动器的性能也有了一定程度的提
5、高。1978 年,Brian Ingram 等提出一种蹄平动的鼓式制动器形式;这种制动器的制动蹄因为受到滑槽的限制,只能平动不能转动,因此没有增势效应,也没有减势效应,与盘式制动器类似,理论上制动效能和摩擦系数的关系是线性的,制动稳定性较好,同时,可以有效地防止传统鼓式制动器普遍的摩擦片偏磨现象,但制动效能因数较低。1997年,提出了一种“电控自增力鼓式制动器”设计方案,该制动器是通过机械的方法来实现鼓式制动器的自增力,制动效能因数的变化范围为26。应用一套电控机械装置调整领蹄的支承点来提高制动器的制动效能数,以补偿由于摩擦材料的热衰退而引起的摩擦系数降低。该制动器达到相同的制动力矩所要求的输
6、入力是盘式制动器1/7。该系统的控制装置允许每个制动器单独工作,从而提高了行车的安全性,另外对驾驶和操纵舒适性也有所提高,但仍然存在一些问题,诸如系统复杂、高能耗、高成本、维护困难等。1999年提出一种四蹄八片 制动器因素计算253.2制动驱动机构的设计计算273.2.1所需制动力计算273.2.2制动踏板力验算283.2.3 确定制动轮缸直径293.2.4轮缸的工作容积293.2.5 制动器所能产生的制动力计算303.3制动蹄片上的制动力矩313.4制动蹄上的压力分布规律353.5 摩擦衬片的磨损特性计算373.6 制动器的热容量和温升的核算403.7行车制动效能计算413.8 驻车制动的计
7、算42第4章制动器主要零件的结构设计454.1制动鼓454.2 制动蹄464.3 制动底板464.4 制动蹄的支承474.5 制动轮缸474.6 摩擦材料474.7 制动器间隙48结论50致谢51参考文献52附录 153附录 254摘要鼓式制动也叫块式制动,现在鼓式制动器的主流是内张式,它的制动蹄位于制动轮内侧,刹车时制动块向外张开,摩擦制动轮的内侧,达到刹车的目的。制动系统在汽车中有着极为重要的作用,如果失效将会造成灾严重的后果。制动系统的主要部件就是制动器,在现代汽车上仍然广泛使用的是具有较高制动效能的蹄鼓式制动器。本设计就摩擦式鼓式制动器进行了相关的设计和计算。在设计过程中,以实际产品为
8、基础,根据我国工厂目前进行制动器新产品开发的一般程序,并结合理论设计的要求,首先根据给定车型的整车参数和技术要求,确定制动器的结构形式及、制动器主要参数,然后计算制动器的制动力矩、制动蹄上的压力分布、蹄片变形规律、制动效能因数、制动减速度、耐磨损特性、制动温升等,并在此基础上进行制动器主要零部件的结构设计。最后,完成装配图和零件图的绘制。关键词:鼓式制动器,制动力矩,制动效能因数,制动减速度,制动温升ABSTRACTDrum brake, also known as block-type brake, drum brakes, now within the mainstream style s
9、heets, and its brake shoes located inside the brake wheel, brake brake blocks out when open, the inside wheel friction brake, to achieve the purpose of the brakes.In the vehicle braking system has a very important role, failure will result in disaster if serious consequences. The main parts of the b
10、raking system is the brake, in the modern car is still widely used in high performance brake shoe - brake drum. The design of the friction drum brakes were related to the design and calculation. In the design process, based on the actual product, according to our current brake factory general new pr
11、oduct development process, and theoretical design requirements, the first model of the vehicle according to the given parameter and the technical requirements, determine the brake structure and, brake main parameters, and then calculate the braking torque brake, brake shoes on the pressure distribut
12、ion, deformation shoe, brake effectiveness factor, braking deceleration, wear characteristics, brake temperature, etc., and in this brake on the basis of the structural design of major components. Finally, assembly drawings and parts to complete mapping.KEY WORDS:drum brake, braking torque, brake ef
13、ficiency factor, braking deceleration, brake temperature rising第1章 鼓式制动器结构形式及选择除了辅助制动装置是利用发动机排气或其他缓速措施对下长坡的汽车进行减缓或稳定车速外,汽车制动器几乎都是机械摩擦式的,既是利用固定元件与旋转元件工作表面间的摩擦而产生制动力矩使汽车减速或停车的。鼓式制动器又分为内张型鼓式制动器和外束型鼓式制动器。内张型鼓式制动器的固定摩擦元件是一对带有摩擦蹄片的制动蹄,后者又安装在制动底板上,而制动底板则又紧固于前梁或后桥壳的突缘上对车轮制动器)或变速器壳或与其相固定的支架上对中央制动器);其旋转摩擦元件固定
14、在轮毂上或变速器第二轴后端的制动鼓,并利用制动鼓的圆柱表面与制动蹄摩擦片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带;其旋转摩擦元件为制动鼓,并利用制动鼓的外圆柱表面和制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作某些汽车的中央制动器,现代汽车已经很少使用,所以内张型鼓式制动器通常简称为鼓式制动器,而通常所说的鼓式制动器即是指这种内张型鼓式制动器。1.1鼓式制动器的形式结构鼓式制动器可按其制动蹄的受力情况分类领从蹄式用凸轮张开);b)领从蹄
15、式用制动轮缸张开);c)双领蹄式非双向,平衡式);d)双向双领蹄式;e)单向增力式;f)双向増力式制动蹄按其张开时的转动方向和制动鼓的转动方向是否一致,有领蹄和从蹄之分。制动蹄张开的转动方向与制动鼓的旋转方向一致的制动蹄,称为领蹄;反之,则称为从蹄。1.2 鼓式制动器按蹄的属性分类1.2.1 领从蹄式制动器 如图1.1a),b)所示,若图上的旋转箭头代表汽车前进时的制动鼓的旋转方向制动鼓正向旋转),则蹄1为领蹄,蹄2为从蹄。汽车倒车时制动鼓的旋转方向改变,变为反向旋转,随之领蹄与从蹄也就相互对调。这种当制动鼓正,反向旋转时总具有一个领蹄和一个从蹄的内张型鼓式制动器,称为领从蹄式制动器。由图1.
16、1a),b)可见,领蹄所受的摩擦力矩使蹄压得更紧,即摩擦力矩具有“增势”作用,故称为增势蹄;而从蹄所受的摩擦力使蹄有离开制动鼓的趋势,即摩擦力矩具有“减势”作用,故又称为减势蹄。“增势”作用使领蹄所受的法向反力增大,而“减势”作用使从蹄所受的法向反力减小。图 1.2 PERROT公司的S凸轮制动器图 1.3 俄KamA3汽车的S凸轮式车轮制动器1 制动蹄;2凸轮;3制动底板;4调整臂;5凸轮支座及制动气室;6滚轮对于两蹄的张开力的领从蹄式制动器结构,如图1.1b)所示,两蹄压紧制动鼓的法向反力应相等。但当制动鼓旋转并制动时,领蹄由于摩擦力矩的“增势”作用,使其进一步压紧制动鼓使其所受的法向反力
17、加大;从蹄由于摩擦力矩的“减势”作用而使其所受的法向反力减少。这样,由于两蹄所受的法向反力不等,不能相互平衡,其差值要由车轮轮毂承受。这种制动时两蹄法向反力不能相互平衡的制动器称为非平衡式制动器。液压或锲块驱动的领从蹄式制动器均为非平衡式结构,也叫简单非平衡式制动器。非平衡式制动器对轮毂轴承造成附加径向载荷,而且领蹄摩擦衬片表面的单位压力大于从蹄的,磨损较严重。为使衬片寿命均匀。可将从蹄的摩擦衬片包角适当地减小。对于如图1.1a)所示具有定心凸轮张开装置的领从蹄制动器,在制动时,凸轮机构保证了两蹄等位移,因此作用于两蹄上的法向反力和由此产生的制动力矩应分别相等,而作用于两蹄的张开力,则不等,并
18、且必然有。由于两蹄的法向反力在制动鼓正,反两个方向旋转并制动时均成立,因此这种结构的特性是双向的,实际上也是平衡式的。其缺点是驱动凸轮的力要大而效率却相对较低,约为0.60.8。因为凸轮要求气压驱动,因此这种结构仅使用于总质量大于或等于10t的货车和客车上。领从蹄式制动器的两个蹄常有固定的支点。张开装置有凸轮式见图1.1a),图1.2,图1.3),锲块式图1.4),曲柄式参见图1.10)和具有两个或四个等直径活塞的制动轮缸式的见图1.1b),图1.5,图1.6)。后者可保证作用在两蹄上的张开力相等并用液压驱动,而凸轮式,锲块式和曲柄式等张开装置则用气压驱动。当张开装置中的制动凸轮和制动锲块都是
19、浮动的时,也能保证两蹄张开力相等,这时的凸轮称为平衡凸轮。也有非平衡式的制动凸轮,其中心是固定的,不能浮动,所以不能保证作用在两蹄上的张开力相等。图1.4 锲块式张开装置的车轮制动器 1 制动蹄;2制动底座;3制动气室;4 锲块;5 滚轮;6 柱塞;7 当块;8 棘爪; 9 调整螺钉;10 调整套筒 图1.5制动轮缸具有两个等直径活塞的车轮制动器 图 1.6制动轮缸有四个直径活塞的车轮制动器1 活塞; 2 活塞支承圈; 3 密封圈;4 支承; 1 制动蹄; 2 制动底板; 3制动器间隙调5 制动底板;6 制动蹄;7 支承销; 凸轮;4偏心支承销9 制动蹄定位销;10 驻车制动传动装置 领从蹄式
20、制动器的效能及稳定性均处于中等水平,但由于其在汽车前进和倒车时的制动性能不变,结构简单,造价较低,也便于附装驻车制动机构,故仍广泛用作中,重型载货汽车前,后轮以及轿车后轮制动器。根据支承结构及调整方法的不同,领从蹄鼓式液压驱动的车轮制动器又有不同的结构方案,如图1.7所示 图 1.7 领从蹄式制动器的结构方案液压驱动)a)一般形式;b)单固定支点;轮缸上调整c)双固定支点;偏心轴调整;d)浮动蹄片;支点端调整1.2.2 双领蹄式制动器当汽车前进时,若两制动蹄均为领蹄的制动器,称为双领蹄式制动器。但这种制动器在汽车倒车时,两制动蹄又都变为从蹄,因此,它又称为单向为单向双领蹄式制动器。如图1.1c
21、)所示,两制动蹄各用一个单活塞制动轮缸推动,两套制动蹄,制动轮缸等机件在制动底板上是以制动底板中心为对称布置的,因此两蹄对鼓作用的合力恰好相互平衡,故属于平衡式制动器。单向双领蹄式制动器根据其调整方法的不同,又有多种结构方案,如图9所示。图 1.8 单向双领蹄式制动器的结构方案液压驱动)a)一般形式;b)偏心调整;c)轮缸上调整;d)浮式蹄片,轮缸支座调整端;e)浮动蹄片,轮缸偏心机构调整双领蹄式制动器有高的正向制动效能,但倒车时变为双从蹄式,使制动效能大减。中级轿车的前制动器常用这种形式,这是由于这类汽车前进制动时,前轴的轴荷及附着力大于后轴,而倒车时则相反,采用这这种结构作为前轮制动器并与
22、领从蹄式后轮制动器相匹配,则可较容易地获得所希望的前,后制动力分配)并使前,后轮制动器的许多零件有相同的尺寸。它不用于后轮还由于有两个互相成中心对称的制动轮缸,难于附加驻车制动驱动机构。1.2.3 双向双领蹄式制动器当制动鼓正向和反向旋转时两制动蹄均为领蹄的制动器,称为双向双领蹄式制动器。如1.1d)及图1.9,图1.10所示。其两蹄的两端均为浮式支承,不是支承在支承销上,而是支承在两个活塞制动轮缸的支座上图1.1d),图1.9)或其他张开装置的支座上图1.10,图1.11)。当制动时,油压使两个制动轮缸的两侧活塞图1.9)或其他张开装置的两侧图1.10,图1.11)均向外移动,使两制动蹄均压
23、紧在制动鼓的内圆柱面上。图 1.9 双向双领蹄式鼓式制动器的结构方案液压驱动)a)一般形式;b)偏心机构调整;c)轮缸上调整制动鼓靠摩擦力带动两制动蹄转过一小角度,使两制动蹄的转动方向均与制动鼓的转向方向一致;当制动鼓反向旋转时,其过程类同但方向相反。因此,制动鼓在正向,反向旋转时两制动蹄均为领蹄,故称双向双领蹄式制动器。它也属于平衡式制动器。由于这种这种制动器在汽车前进和倒退时的性能不变,故广泛用于中,轻型载货汽车和部分轿车的前,后轮。但用作后轮制动器时,需另设中央制动器。图 1.10 LCCAS公司的曲柄机构制动器图 1.11 PERROT的双锲式制动器1.2.4 单向増力式制动器 如图1
24、.1e)所示,两蹄下端以顶杆相连接,第二制动蹄支承在其上端制动底板上的支承销上。当汽车前进时,第一制动蹄被单活塞的制动轮缸推压到制动鼓的内圆柱面上。制动鼓靠摩擦力带动第一制动蹄转过一小角度,进而经顶杆推动第二制动蹄也压向制动鼓的工作表面并支承在其上端的支承销上。显然,第一制动蹄为一增势的领蹄,而第二制动蹄不仅是一个增势领蹄,而且经顶杆传给它的推力Q要比制动轮缸给第一制动蹄的推力P大很多,使第二制动蹄的制动力矩比第一制动蹄的制动力矩大2-3倍之多。由于制动时两蹄的法向反力不能相互平衡,因此属于一种非平衡式制动器。 虽然这种制动器在汽车前进制动时,其制动效能很高,且高于前述各种制动器,但在倒车制动
25、时,其制动效能却是最低的。因此,仅用于少数轻,中型货车和轿车上作前轮制动器。1.2.5 双向増力式制动器 如图1.1f)所示,将单向増力式制动器的单活塞制动轮缸换以双活塞制动轮缸,其上端的支承销也作为两蹄可共用的,则成为双向増力式制动器。对双向増力式制动器来说,不论汽车前进制动或倒退制动,该制动器均为増力式制动器。只是当制动鼓正向旋转时,前制动蹄为第一制动蹄,后制动蹄为第二制动蹄;而反向旋转时,第一制动蹄与第二制动蹄正好对调。第一制动蹄是增势蹄,第二制动蹄不仅是增势领蹄,而且经顶杆传给它的推力Q要比制动轮缸给第一蹄或第二蹄的推力大很多。但制动时作用于第二蹄上端的制动轮缸推力起着减小第二蹄与支承
26、销间压紧力的作用。双向増力式制动器也是属于非平衡式制动器。 图1.12给出了双向増力式制动器浮动支承)的几种结构方案,图14给出了双向増力式制动器固定支点)另外几种结构方案。图 1.12 双向増力式制动器浮动支承)的结构方案a)一般形式;b)支承上调整;c)轮缸上调整图 1.13 双向増力式制动器固定支点)的结构方案a)一般形式;b)浮动调整;c)中心调整 双向増力式制动器在高级轿车上用得较多,而且往往将其作为行车制动与驻车制动共用的制动器,但行车制动是由液压通过制动轮缸产生制动蹄的张开力进行制动,而驻车制动则是用制动操纵手柄通过拉绳及杠杆等操纵。另外,它也广泛用于汽车中央制动器,因为驻车制动
27、要求制动器正,反向的制动效能都很高,而且驻车制动若不用于应急制动时不会产生高温,因而热衰退问题并不突出。 上述制动器的特点是用制动器效能,效能稳定性和摩擦衬片磨损均匀程度来评价。増力式制动器效能最高,双领蹄式次之,领蹄式更次之,还有一种双从蹄式制动蹄的效能最低,故极少采用。而就工作稳定性来看,名次排列正好与效能排列相反,双从蹄式最好,増力式最差。摩擦系数的变化是影响制动器工作效能稳定性的主要因素。 还应指出,制动器的效能不仅与制动器的结构形式,结构参数和摩擦系数有关,也受到其他有关因素的影响。例如制动蹄摩擦衬片与制动鼓仅在衬片的中部接触时输出的制动力矩最小;而在衬片的两端接触时,输出的制动力矩
28、就大。制动器的效能常以制动器效能因数或简称为制动器因数BFbrake factor)来衡量,制动器因数BF可以用下式表达:BF=式中 f,f:制动器摩擦副间的摩擦力,见图1.1;,: 制动器摩擦副间的法向力,对平衡式鼓式制动器:= f制动器摩擦副的摩擦系数; P鼓式制动器的蹄端作用力,见图1.1。图 1.14 制动器因数BF与摩擦系数f的关系曲线1増力式制动器;2双领蹄式制动器;3领从蹄式制动器;4盘式制动器;5双从蹄式制动器 基本尺寸比例相同的各种内张型鼓式制动器的制动因数BF与摩擦系数f之间的关系如图15所示。BF值大,即制动效能好。在制动过程中由于热衰退,摩擦系数是变化的,因此摩擦系数变
29、化时。BF值变化小的,制动效能稳定性就好。 制动器因数值愈大,摩擦副的接触情况对制动效能的影响也就愈大。所以,对制动器的正确调整,对高效能的制动器尤为重要。 结合本次课题研究的对象0的车轮,其力矩平衡方程为-=0 式2.1)式中: 制动器对车轮作用的制动力矩,即制动器的摩擦力矩,其方向与车轮旋转方向相反, 地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称地面制动力,其方向与汽车行驶方向相反,N;车轮有效半径,m。令式0时,大小亦相等,且仅由制动器结构参数所决定。即取决于制动器结构形式,尺寸,摩擦副的摩擦系数及车轮半径等,并与制动踏板力即制动系的液压或气压成正比。当加大踏板力以加大,和均
30、随之增大。但地面制动力受附着条件的限制,其值不可能大于附着力,即=Z 式2.3)或= Z 式2.4)式中 轮胎与地面间的附着系数; Z 地面对车轮的法向反力。 当制动器制动力和地面制动力达到附着力值时,车轮即被抱死并在地面上滑移。此后制动力矩即表现为静摩擦力矩,而=/即成为与相平衡以阻止车轮再旋转的周缘力的极限值。当制动到=0以后,地面制动力达到附着力值后就不再增大,而制动器制动力由于踏板力增大使摩擦力矩增大而继续上升见图2.1)图 2.1 制动器制动力,地面制动力与踏板力的关系根据汽车制动时的整车受力分析,考虑到制动时的轴荷转移,可求得地面对前,后轴车轮的法向反力,为:=式2.5)式中:G
31、汽车所受重力,N; L 汽车轴距,mm; 汽车质心离前轴距离,mm; 汽车质心离后轴距离,mm; 汽车质心高度,mm; 附着系数。取一定值附着系数=0.8;所以在空,满载时由式2.5)可得前后制动反力Z为以下数值故 满载时:=11424.43N=4255.57N 空载时:=9268.32N=1908.46N由以上两式可求得前、后轴车轮附着力即为车辆工况前轴法向反力,N后轴法向反力,N汽车空载9268.321908.46汽车满载11424.434255.57表2.1图 2.2 制动时的汽车受力图汽车总的地面制动力为=+=Gq式2.6)式中qq=) 制动强度,亦称比减速度或比制动力;, 前后轴车轮
32、的地面制动力。由以上两式可求得前,后车轮附着力为=式2.7)由已知条件及式2.7)可得得前、后轴车轮附着力即地面最大制动力为故 满载时:=9139.54N=3404.45N 空载时:=7413.60N=1526.77N故满载时前、后轴车轮附着力即地面最大制动力为:车辆工况前轴车轮附着力,N后轴车轮附着力,N汽车空载7413.601526.77汽车满载9139.543404.45表 2.2上式表明:汽车附着系数为任意确定的路面上制动时,各轴附着力即极限制动力并非为常熟,而是制动强度q或总之动力的函数。当汽车各车轮制动器的制动力足够时,根据汽车前,后的周和分配,前,后车轮制动器制动力的分配,道路附
33、着系数和坡度情况等,制动过程可能出现的情况有三种,即1)前轮先抱死拖滑,然后后轮再抱死拖滑; 2)后轮先抱死拖滑,然后前轮再抱死拖滑; 3)前,后轮同时抱死拖滑。 由以上三种情况中,显然是最后一种情况的附着条件利用得最好。 由式2.6),2.7)不难求得在任何附着系数的路面上,前,后车轮同时抱死即前,后轴车轮附着力同时被充分利用的条件是+=+=G=式2.8)式中 前轴车轮的制动器制动力,=; 后轴车轮的制动器制动力,=; 前轴车轮的地面制动力; 后轴车轮的地面制动力;, 地面对前,后轴车轮的法向反力;G 汽车重力;, 汽车质心离前,后轴距离; 汽车质心高度。 由式2.8)可知,前,后车轮同时抱
34、死时,前,后制动器的制动力,是的函数。 由式2.8)中消去,得式2.9)式中 L 汽车的轴距。 将上式绘成以,为坐标的曲线,即为理想的前,后轮制动器制动力分配曲线,简称I曲线,如图2.3所示。如果汽车前,后制动器的制动力,能按I曲线的规律分配,则能保证汽车在任何附着系数的路面上制动时,能使前后车轮同时抱死。然而,目前大多数两轴汽车由其是货车的前后制动力之比为一定值,并以前制动与总制动力之比来表明分配的比例,称为汽车制动器制动力分配系数= 式2.10)联立式2.8)和式2.10)可得=带入数据得 满载时:=0.73空载时:=0.82由于在附着条件限定的范围内,地面制动力在数值上等于相应的制动周缘
35、力,故又可通称为制动力分配系数。又由于满载和空载时的理想分配曲线非常接近,故应采用结构简单的非感载式比例阀,同时整个制动系应加装ABS防抱死制动系统。图 2.3 某载货汽车的I曲线与线2.2 同步附着系数由式2.10)可得表达式 = 式2.11) 上式在图2.3中是一条通过坐标原点斜率为的直线,它是具有制动器制动力分配系数的汽车的实际前,后制动器制动力分配线,简称线。图中线与I曲线交于B点,可求出B点处的附着系数=,则称线与I线交线处的附着系数为同步附着系数。它是汽车制动性能的一个重要参数,由汽车结构参数所决定。同步附着系数的计算公式是: 式2.12)由已知条件以及式而由式 可得前轴车轮的利用
36、附着系数为 式(2.14同样可求出后轴车轮的利用附着系数为: 式(2.15由此得出利用附着系数与制动强度的关系曲线为:图2.4 制动强度与利用附着系数关系曲线空载图2.5 制动强度与利用附着系数关系曲线满载根据GB 126761999附录A,未装制动防抱死装置的M1类车辆应符合下列要求:(1 值在0.20.8之间时,则必须满足q0.1+0.85(-0.2 (2 q值在0.150.8之间,车辆处于各种载荷状态时,1线,即前轴利用附着系数应在2线,即后轴利用附着系数线之上;但 q值在0.30.45时,若2不超过=q线以上0.05,则允许2线,即后轴利用附着系数线位于1线,即前轴利用附着系数线之上。
37、由以上两图所示,设计的制动器制动力分配符合要求。2.3制动器最大制动力矩应合理的确定前,后制动器的制动力矩,以保证汽车有良好的制动效能和稳定性。最大制动力是在汽车附着质量被完全利用的条件下获得的,这时制动力与地面作用于车轮的法向力,成正比。由式2.8)可知,双轴汽车前,后车轮附着力同时被充分利用或前,后同时抱死时的制动力之比为= 式2.16)式中 , 汽车质心离前,后轴距离; 同步附着系数; 汽车质心高度。通常,上式的比值:轿车约为1.31.6;货车约为0.50.7.制动器所能产生的制动力矩,受车轮的计算力矩所制约,即= 式2.17)= 式2.18)式中: 前轴制动器的制动力,; 后轴制动器的制动力,; 作用于前轴车轮上的地面法向反力; 作用于前轴车轮上的地面法向反力; 车轮有效半径。 根据市场上的大多数微型货车轮胎规格及国家标准GB 9744-2007;选取的轮胎型145/80R12。由GB2978可得有效半径=270mm对于常遇到的道路条件较差,车速较低因而选取了较小的同步附着系数值的汽车,为保证