线性规划练习习题.doc

上传人:牧羊曲112 文档编号:4299702 上传时间:2023-04-14 格式:DOC 页数:16 大小:1.05MB
返回 下载 相关 举报
线性规划练习习题.doc_第1页
第1页 / 共16页
线性规划练习习题.doc_第2页
第2页 / 共16页
线性规划练习习题.doc_第3页
第3页 / 共16页
线性规划练习习题.doc_第4页
第4页 / 共16页
线性规划练习习题.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

《线性规划练习习题.doc》由会员分享,可在线阅读,更多相关《线性规划练习习题.doc(16页珍藏版)》请在三一办公上搜索。

1、1已知实数满足,则的最小值为( )A B C D2设关于x,y的不等式组表示的平面区域内存在点,满足,则m的取值范围是( )A B C D3已知,满足约束条件,若的最大值为,则( )A B C1 D24设满足约束条件,若目标函数的最大值为,则的最小值为( )A B C D45当实数满不等式组:时,恒有成立,则实数的取值范围是_6设实数,满足则的取值范围是 7设满足约束条件,若目标函数的最大值为,则的最小值为_8已知方程,其一根在区间内,另一根在区间内,则的取值范围为 9已知实数,满足条件 则的最小值为 .10若满足条件,则z = x+3y的最大值为 11如图,直三棱柱的底面是边长为正三角形,为

2、的中点()求证:;()在棱上是否存在点,使得平面?若存在,确定点的位置;若不存在,说明理由12如图,在三棱锥PABC中,PAPBAB2,BC3,ABC90,平面PAB平面ABC,D、E分别为AB、AC中点(1)求证:DE平面PBC;(2)求证:ABPE;(3)求二面角APBE的大小13如图,已知四棱锥PABCD,底面ABCD为边长为2对的菱形,PA平面ABCD,ABC=60,E,F分别是BC,PC的中点(1)判定AE与PD是否垂直,并说明理由;(2)若PA=2,求二面角EAFC的余弦值14如图,在四棱锥中,底面是正方形点是棱的中点,平面与棱交于点()求证:;()若,且平面平面,试证明平面;()

3、在()的条件下,线段上是否存在点,使得平面?(请说明理由)15如图,在长方体中,面与棱分别交于点,且均为中点(1)求证:面;(2)若为的中点上是否存在动点,使得面?若存在,求出点的位置,并加以证明;若不存在,说明理由参考答案1C【解析】试题分析:,显然表示点与点连线的斜率作出题设不等式表示的平面区域,如图内部(含边界),是内任意一点,显然当与重合时,最小,即的最小值为故选C考点:简单线性规划的非线性应用2C【解析】试题分析:将化成,将其代入,得,即,由题意,得有解,即,解得,即m的取值范围是;故选C考点:不等式组与平面区域【技巧点睛】本题考查二元一次不等式组和平面区域、不等式组的解的存在性,属

4、于中档题;学生解决本题的常用方法是先画出可行域再思考如何处理,难度较大;本题的解题技巧在于,将平面区域内存在点使成立,利用消元法将其转化为关于的不等式组有解的问题,再利用集合间的关系进行求解3C【解析】试题分析:根据题意作出满足约束条件下的平面区域,如图所示,由图知,当目标函数经过点时取得最大值,所以,解得,故选C考点:简单的线性规划问题4A【解析】试题分析:作出可行域如图, ,当目标函数过点时纵截距最大,此时最大即,当且仅当,即时取故选A考点:1线性规划;2基本不等式5【解析】试题分析:作出满足不等式组的平面区域,如图所示,因为对任意的实数不等式恒成立,由图可知斜率或,解得,所以实数的取值范

5、围是考点:简单的线性规划问题【技巧点睛】(1)求解与平面区域有关的问题的关键是作出平面区域,在含有参数的问题中注意对参数的聚会范围进行讨论;(2)在刻有参数的二元一次不等式组所表示的平面区域问题中,首先把不含参数的平面区域确定好,然后用数形结合的方法根据参数的不同取值情况画图观察区域的形状,根据求解要求确定问题的答案6【解析】试题分析:作出可行域,令,则由的几何意义可知取点时,取得最大值,取点时,取得最小值,则,又,由及单调递增,可知单调递增,故,所以的取值范围是考点:1、线性规划;2、函数单调性求最值【思路点睛】本题主要考查目标函数求取最值(范围)问题,属困难题由题给不等式组作出相应可行域,

6、取目标函数中,由的几何意义:可行域中的点与原点的连线斜率,可知,取得最大值和最小值的最优解分别为点和点,从而,此时目标函数为,结合函数单调性可求7【解析】试题分析:由得,平移直线由图象可知,当 过时目标函数的最大值为,即,则,当且仅当,即时,取等号,故的最小值为考点:1、利用可行域求线性目标函数的最值;2、利用基本不等式求最值【方法点晴】本题主要考查可行域、含参数目标函数最优解和均值不等式求最值,属于难题含参变量的线性规划问题是近年来高考命题的热点,由于参数的引入,提高了思维的技巧、增加了解题的难度, 此类问题的存在增加了探索问题的动态性和开放性,此类问题一般从目标函数的结论入手,对目标函数变

7、化过程进行详细分析,对变化过程中的相关量的准确定位,是求最优解的关键8【解析】试题分析:设,因为其一根在区间内,另一根在区间内,所以,即,设,即表示过定点(1,3)的斜率,所以答案应填:考点:1、函数的零点;2、二次函数的性质;3、线性规划【思路点睛】本题主要考查的是函数的零点二次函数的性质利用线性规划的方法来解决,属于中档稍难题,分析问题结合图象利用斜率知识点解决问题9-1.【解析】试题分析:由题意作出其平面区域,当|y|最小,x最大,即过(1,0)时,最小由题意作出其平面区域,由图可知,|y|x的最小值为01=1故答案为:1考点:简单线性规划1011【解析】试题分析:作出不等式组作出平面区

8、域如图所示,由,得,平移直线由图象可知当过点时,直线截距最大,此时最大,由,得,即此时,故答案为11.考点:线性规划的应用.11(I)证明见解析;(II)当为棱中点时,平面【解析】试题分析:(I)取中点,连接,先证,再证,进而可证平面;(II)连接,欲证平面,需在平面找出两条相交的直线与垂直,由(I)知,关键是证明,当为棱中点时,在直角梯形中,通过三角形相似易证直角梯形的对角线互相垂直,进而根据线面垂直的判定定理可得平面试题解析:(I)取中点,连接,为中点,又平面,平面,. 为正三角形, 又, 平面 又平面 . (II)当为棱中点时,平面.证明如下:连接,.因为平面,平面,所以,又,四边形是矩

9、形,,当为棱中点时,,所以,所以,所以 又因为,, 所以平面,即当为棱中点时,平面. 考点:1、柱体的结构特征;2、线面垂直 ;3、线线垂直【方法点晴】证明线线垂直的常有方法有等腰三角形底边上的高线,菱形的对角线,勾股定理,圆中直径所对的圆周角为直角,直线与平面垂直的定义;证明线面垂直的常用方法有定义法,线面垂直的判断定理.本题主要考查的是空间直线与直线、直线与平面的位置关系等基础知识,属于中档题考查空间想象能力、推理论证能力、运算求解能力,将空间问题转化为平面问题的能力12(1)见解析;(2)见解析;(3)60【解析】试题分析:(1)由于是三角形的中位线,因此有,再写上线面平行的条件,线在面

10、内,线在面外可得线面平行;(2)由(1)可得,如果有,则必有平面,因此可先证明平面后可得,而为此可证,这由等腰三角形的性质可得;(3)要求二面角,可以为坐标轴建立空间直角坐标系后,写出各点坐标,求出平面和平面的法向量,由法向量的夹角可得二面角大小(它们相等或互补,注意判别二面角的大小)试题解析:(1) D、E分别为AB、AC中点, DEBC DE?平面PBC,BC平面PBC,DE平面PBC (2)连结PD,PA=PB, PD AB DEBC,BC AB, DE AB 又 ,AB平面PDE PE平面PDE,ABPE (3)平面PAB平面ABC,平面PAB平面ABC=AB,PD AB, PD平面A

11、BC 如图,以D为原点建立空间直角坐标系B(1,0,0),P(0,0,),E(0,0) ,=(1,0, ),=(0, )设平面PBE的法向量,则 ,令得 DE平面PAB,平面PAB的法向量为 (0,1,0)设二面角的APBE大小为,由图知,所以,即二面角的APBE的大小为60考点:线面平行的判定,线面垂直的判定与性质,二面角【名师点睛】求二面角的大小如图,AB,CD是二面角-l-的两个半平面内与棱l垂直的直线,则二面角的大小= . 如图,分别是二面角-l-的两个半平面,的法向量,则二面角的大小满足cos = cos或-cos 13(1)垂直,理由见解析;(2)所求二面角的余弦值为【解析】试题分

12、析:(1)判断垂直证明AEBCPAAE推出AE平面PAD,然后证明AEPD(2)由(1)知AE,AD,AP两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,求出相关点的坐标,求出平面AEF的一个法向量,平面AFC的一个法向量通过向量的数量积求解二面角的余弦值解:(1)垂直证明:由四边形ABCD为菱形,ABC=60,可得ABC为正三角形因为E为BC的中点,所以AEBC又BCAD,因此AEAD因为PA平面ABCD,AE?平面ABCD,所以PAAE而PA?平面PAD,AD?平面PAD且PAAD=A,所以AE平面PAD,又PD?平面PAD,所以AEPD (2)由(1)知AE,AD,AP两两垂直,

13、以A为坐标原点,建立如图所示的空间直角坐标系,又E,F分别为BC,PC的中点,A(0,0,0),D(0,2,0),P(0,0,2),所以,设平面AEF的一个法向量为,则,因此,取z1=1,则 因为BDAC,BDPA,PAAC=A,所以BD平面AFC,故为平面AFC的一个法向量又,所以 因为二面角EAFC为锐角,所以所求二面角的余弦值为 考点:二面角的平面角及求法;直线与平面垂直的性质14(I)证明见解析;(II)证明见解析;(III)线段上不存在点,使得平面【解析】试题分析:(I)先证明平面,即可证明;(II)利用平面平面,证明,所以,即可证明平面;(III)在(II)的条件下,线段上存在点,

14、使得平面试题解析:()证明:因为底面是正方形,所以又因为平面,平面,所以平面又因为四点共面,且平面平面,所以 ()在正方形中,又因为平面平面,且平面平面,所以平面又平面 所以由()可知,又因为,所以. 由点是棱中点,所以点是棱中点在中,因为,所以又因为,所以平面 ()不存在假设线段上是否存在点 ,使得平面 取AB中点N,连接NE,易知,过E有两条直线与AF平行 矛盾 线段上不 存在点 ,使得平面 考点:直线与平面垂直的判定;空间直线与直线的位置关系的判定15(1)证明见解析;(2)当点满足时,直线面【解析】试题分析:(1)证明,且,得四边形为平行四边形,所以;(2)当点满足时,利用线面位置的判定定理,证明、,从而得到直线面试题解析:(1)连接,因为均为中点,所以,又因为,且,所以,且,所以四边形为平行四边形,所以,又因为面面,所以面;(2)当点满足时,面面,证明如下:连接交于,则经过点,取中点,连接,则为三角形边上的中位线,所以,因为,且为的中点,所以,所以,因为底面为正方形,所以,又底面,所以,又,所以面,又面,所以,由第(1)问知,所以,又是平面四边形的对角线,所以它们必相交,所以面考点:线面位置关系的判定与证明;立体几何的探索性问题的证明

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号