《等腰三角形(1).doc》由会员分享,可在线阅读,更多相关《等腰三角形(1).doc(3页珍藏版)》请在三一办公上搜索。
1、 八年级数学 学科罗田县双凤坳中学集体备课教案 2013年秋八年级数学教案章节13.3.1课题等腰三角形(1)课型新授课教法将演练结合教学目标 教学目的 1使学生了解等腰三角形的有关概念,掌握等腰三角形的性质。 2通过探索等腰三角形的性质,使学生进一步经历观察、实验、推理、交流等活动。教学重点等腰三角形等边对等角性质。教学难点通过操作,如何观察、分析、归纳得出等腰三角形性质。教学过程一、复习引入 1让学生在练习本上画一个等腰三角形,标出字母,问什么样的三角形是等腰三角形? ABC中,如果有两边AB=AC,那么它是等腰三角形。 2日常生活中,哪些物体具有等腰三角形的形象? 二、新课 1指出ABC
2、的腰、顶角、底角。 相等的两边AB、AC都叫做腰,另外一边BC叫做底边,两腰的夹角BAC,叫做顶角,腰和底边的夹角ABC、ACB叫做底角。 2实验。 现在请同学们做一张等腰三角形的半透明纸片,每个人的等腰三 角形的大小和形状可以不一样,把纸片对折,让两腰AB、AC重叠在一起,折痕为AD,如图(2)所示,你能发现什么现象吗?请你尽可能多的写出结论。 可让学生有充分的时间观察、思考、交流,可能得到的结论: (1)等腰三角形是轴对称图形 (2)BC (3)BDCD,AD为底边上的中线。 (4)ADBADC90,AD为底边上的高线。 (5)BADCAD,AD为顶角平分线。 结论(2)用文字如何表述?
3、等腰三角形的两个底角相等(简写成“等边对等角”)。 结论(3)、(4)、(5)用一句话可以归结为什么? 等腰三角形的顶角平分线,底边上的高和底边上的中线互相重合 (简称“三线合一”)。 例l已知:在ABC中,ABAC,B80,求C和A的度数。 本题较易,可由学生口述,教师板书解题过程。 引申:已知:在ABC中,ABAC,A80,求B和C的度数。 小结:在等腰三角形中,已知一个角,就可以求另外两个角。 三、练习巩固 P84 练习1、2、3 补充: 填空:在ABC中,ABAC,D在BC上, 1如果ADBC,那么BAD_,BD_ 2如果BADCAD,那么AD_,BD_3如果BDCD,那么BAD_,AD_布置作业 P86习题第1、2、3题。教学反思本节课,我们学习了等腰三角形的性质:等腰三角形的两底角相等 (简写“等边对等角”);等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(简称“三线合一”),它们对今后的学习十分重要,因此要牢记并能熟练应用。用数学语言表述如下: 1ABC中,如果ABAC,那么BC。 2ABC中,如果A月AC,D在BC上,那么由条件(1)BADCAD,(2)ADAC,(3)BDCD中的任意一个都可以推出另外两个。