二次函数的图像与性质(1)课件[1].ppt

上传人:牧羊曲112 文档编号:4488329 上传时间:2023-04-24 格式:PPT 页数:12 大小:953.01KB
返回 下载 相关 举报
二次函数的图像与性质(1)课件[1].ppt_第1页
第1页 / 共12页
二次函数的图像与性质(1)课件[1].ppt_第2页
第2页 / 共12页
二次函数的图像与性质(1)课件[1].ppt_第3页
第3页 / 共12页
二次函数的图像与性质(1)课件[1].ppt_第4页
第4页 / 共12页
二次函数的图像与性质(1)课件[1].ppt_第5页
第5页 / 共12页
点击查看更多>>
资源描述

《二次函数的图像与性质(1)课件[1].ppt》由会员分享,可在线阅读,更多相关《二次函数的图像与性质(1)课件[1].ppt(12页珍藏版)》请在三一办公上搜索。

1、二次函数y=ax2的图象和性质,初三数学,x,y,一.平面直角坐标系:1.有关概念:,x(横轴),y(纵轴),o,第一象限,第二象限,第三象限,第四象限,P,a,b,(a,b),2.平面内点的坐标:,3.坐标平面内的点与有序 实数对是:,一一对应.,坐标平面内的任意一点M,都有唯一一对有序实数(x,y)与它对应;任意一对有序实数(x,y),在坐标平面内都有唯一的点M与它对应.,4.点的位置及其坐标特征:.各象限内的点:.各坐标轴上的点:.各象限角平分线上的点:.对称于坐标轴的两点:.对称于原点的两点:,x,y,o,(+,+),(-,+),(-,-),(+,-),P(a,0),Q(0,b),P(

2、a,a),Q(b,-b),M(a,b),N(a,-b),A(x,y),B(-x,y),C(m,n),D(-m,-n),函数图象画法,列表,描点,连线,0,0.25,1,2.25,4,0.25,1,2.25,4,描点法,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,0,-0.25,-1,-2.25,-4,-0.25,-1,

3、-2.25,-4,0,0.5,2,4.5,8,0.5,2,4.5,8,列表参考,0,0.5,2,4.5,8,0.5,2,4.5,8,0,1.5,-6,1.5,-6,二次函数y=ax2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线。,这条抛物线关于y轴对称,y轴就是它的对称轴。,这条抛物线关于y轴对称,y轴就是它的对称轴。,这条抛物线关于y轴对称,y轴就是它的对称轴。,对称轴与抛物线的交点叫做抛物线的顶点。,对称轴与抛物线的交点叫做抛物线的顶点。,对称轴与抛物线的交点叫做抛物线的顶点。,(0,0),(0,0),y轴,y轴,在x轴的上方(除顶点外),在x轴的下方(除顶点外),向上,向下,当x

4、=0时,最小值为0。,当x=0时,最大值为0。,二次函数y=ax2的性质,、顶点坐标与对称轴,、位置与开口方向,、增减性与极值,2、练习2,3、想一想,在同一坐标系内,抛物线y=x2与抛物线 y=-x2的位置有什么关系?如果在同一坐标系内 画函数y=ax2与y=-ax2的图象,怎样画才简便?,4、练习4,动画演示,当a0时,在对称轴的左侧,y随着x的增大而减小。,当a0时,在对称轴的右侧,y随着x的增大而增大。,当a0时,在对称轴的左侧,y随着x的增大而增大。,当a0时,在对称轴的右侧,y随着x的增大而减小。,1、抛物线y=ax2的顶点是原点,对称轴是y轴。,2、当a0时,抛物线y=ax2在x

5、轴的上方(除顶点外),它的开口向上,并且 向上无限伸展;当a0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且 向下无限伸展。,3、当a0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大。当x=0时函数y的值最小。当a0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大。,二次函数y=ax2的性质,4,4、|a|越大抛物线的开口越小,2、根据左边已画好的函数图象填空:(1)抛物线y=2x2的顶点坐标是,对称轴是,在 侧,y随着x的增大而增大;在 侧,y随着x的增大而减小,当x=时,函数y的值最小,

6、最小值是,抛物线y=2x2在x轴的 方(除顶点外)。,(2)抛物线 在x轴的 方(除顶点外),在对称轴的左侧,y随着x的;在对称轴的右侧,y随着x的,当x=0时,函数y的值最大,最大值是,当x 0时,y0.,(0,0),y轴,对称轴的右,对称轴的左,0,0,上,下,增大而增大,增大而减小,0,1、已知抛物线y=ax2经过点A(-2,-8)。(1)求此抛物线的函数解析式;(2)判断点B(-1,-4)是否在此抛物线上。(3)求出此抛物线上纵坐标为-6的点的坐标。,解(1)把(-2,-8)代入y=ax2,得-8=a(-2)2,解出a=-2,所求函数解析式为y=-2x2.,(2)因为,所以点B(-1,-4)不在此抛物线上。,(3)由-6=-2x2,得x2=3,所以纵坐标为-6的点有两个,它们分别是,y=-2x2,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号