排列组合方法精讲.doc

上传人:小飞机 文档编号:4516272 上传时间:2023-04-25 格式:DOC 页数:5 大小:287.50KB
返回 下载 相关 举报
排列组合方法精讲.doc_第1页
第1页 / 共5页
排列组合方法精讲.doc_第2页
第2页 / 共5页
排列组合方法精讲.doc_第3页
第3页 / 共5页
排列组合方法精讲.doc_第4页
第4页 / 共5页
排列组合方法精讲.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《排列组合方法精讲.doc》由会员分享,可在线阅读,更多相关《排列组合方法精讲.doc(5页珍藏版)》请在三一办公上搜索。

1、高二十班解排列组合复习1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.五人并排站成一排,如果必须相邻且在的右边,那么不同的排法种数有( ) D、24种解析:把视为一人,且固定在的右边,则本题相当于4人的全排列,种,答案:.2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) B、3600种 解析:除甲乙外,其余5个排列数为种,再用甲乙去插6个空位有种,不同的排法种数是种,选.3.定序问题缩倍法:在排列

2、问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.五人并排站成一排,如果必须站在的右边(可以不相邻)那么不同的排法种数是( )解析:在的右边与在的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即种,4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A、6种 B、9种 C、11种 D、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三

3、个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有331=9种填法,选.5.有序分配问题逐分法:(注意是有序)有序分配问题指把元素分成若干组,可用逐步分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A、1260种 B、2025种 C、2520种 D、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有种,选.(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( )A、种 答案:.6

4、.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有种方法,再把三组学生分配到三所学校有种,故共有种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( ) B、240种 答案:.7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,

5、每一种插法对应着一种分配方案,故共有不同的分配方案为种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:若甲乙都不参加,则有派遣方案种;若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有方法,所以共有;若乙参加而甲不参加同理也有种;若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有种,共有方法.所以共有不同的派遣方法总数为种.9.多元问题分类法:元素多,取出的情况也多种,

6、可按结果要求分成不相容的几类情况分别计数,最后总计.例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有个,个,合并总计300个,10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式.例10.从6名运动员中选出4人参加4100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集=6人中任取4人参赛的排列,A=甲跑第一棒的排列,B=乙跑第四棒的排列,根据求集合元素个数的公式得参赛方法共有:种.11.定位问题优先法:某个或几个元素

7、要排在指定位置,可先排这个或几个元素;再排其它的元素。例11.1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?解析:老师在中间三个位置上选一个有种,4名同学在其余4个位置上有种方法;所以共有种。.12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是( )解析:前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共种,(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?解析:看成一排,某2个元素在前半

8、段四个位置中选排2个,有种,某1个元素排在后半段的四个位置中选一个有种,其余5个元素任排5个位置上有种,故共有种排法.13.“至少”“至多”问题用间接排除法或分类法:例13.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙 型电视机各一台,则不同的取法共有 ( )解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,故不同的取法共有种解析2:至少要甲型和乙 型电视机各一台可分两种情况:甲型1台乙型2台;甲型2台乙型1台;故不同的取法有台,选.14.选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法.例14.(1)四个不同

9、球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?解析:先取四个球中二个为一组,另二组各一个球的方法有种,再排:在四个盒中每次排3个有种,故共有种.(2)9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法?解析:先取男女运动员各2名,有种,这四名运动员混和双打练习有中排法,故共有种.15.部分不符合条件问题排除法:在选取的总数中,只有一部分合条件,可以从总数中减去不符合条件数,即为所求.例15.(1)以正方体的顶点为顶点的四面体共有( )解析:正方体8个顶点从中每次取四点,理论上可构成四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面

10、体,所以四面体实际共有个.17.可重复的排列求幂法:允许重复排列问题的特点是以元素为研究对象,元素不受位置的约束,可逐一安排元素的位置,一般地个不同元素排在个不同位置的排列数有种方法.例17.把6名实习生分配到7个车间实习共有多少种不同方法?解析:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有种不同方案. 对于存在特殊元素或特殊位置的排列组合问题,我们可以从这些特殊入手。先满足特殊元素或特殊位置,再去满足其它元素或位置,这种解法叫做特殊优先法。例:1名老师和4名学生排成一排,若老师不排在两端,则

11、共有多少种不同的排法?分析:(解法1、特殊元素法)老师在中间3个位置上任选1个的选法有A41种,然后剩余的四名学生在余下的四个位置上,排法有A44种。由分步记数原理,所以共有A31A44=72 种。(解法2、特殊位置法)先安排两端站两名学生共有A42种方法,其余位置安排有A33种。所以共有排法数为A42A33=72种。1、 总体淘汰法.对于含否定词的问题,还可以从总体中把不符合要求的除去。比如上面的例题中,1名老师和4名学生共5人,其排列方法为A55种,把老师排在队伍两端的情况A21A44减去。所以方法数为A55-A21 A44=72种。2、 顺序问题用“除法”对于几个元素顺序一定的排列问题,

12、可先把这几个元素同其余元素一同进行排列,然后用总的排列数除以这几个元素的全排列数。例:7个节目,甲、乙、丙三个节目按给定顺序出现,有多少种排法?分析:7个节目的全排列为A77,甲、乙、丙之间的顺序已定。所以有A77A33=840种。(1)、全相邻问题,捆邦法例2、6名同学排成一排,其中甲,乙两人必须排在一起的不同排法有( )种。说明:从上述解法可以看出,所谓“捆邦法”,就是在解决对于某几个元素要求相邻问题时,可以整体考虑将相邻元素视作一个“大”元素。(2)、全不相邻问题,插空法例3、要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少不同的排法,解:先将6个歌唱

13、节目排好,其中不同的排法有6!,这6个节目的空隙及两端共有七个位置中再排4个舞蹈节目有种排法,由乘法原理可知,任何两个舞蹈节目不得相邻的排法为种例4(06重庆卷)高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是 解:不同排法的种数为3600,说明:从解题过程可以看出,不相邻问题是指要求某些元素不能相邻,由其它元素将它隔开,此类问题可以先将其它元素排好,再将特殊元素插入,故叫插空法。2、顺序一定,除法处理或分类法。例7、信号兵把红旗与白旗从上到下挂在旗杆上表示信号,现有3面红旗、2面白旗,把5面旗都挂上去,可表示不同信号

14、的种数是( )(用数字作答)。解:5面旗全排列有种挂,由于3面红旗与2面白旗的分别全排列均只能作一次的挂法,故有 说明:在排列的问题中限制某几个元素必须保持一定的顺序问题,这类问题用缩小倍数的方法求解比较方便快捷例8(06湖北卷)某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程的不同排法种数是 。(用数字作答)解一:依题意,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个空中(插一个或二个),可得有30种不同排法。解二:=30例9、由数字0、1、2、3、4、5组成没有重复数字的

15、6位数,其中个位数字小于十位的数字的共有( )解: 故选(B)4、多元问题,分类法例10(06陕西卷)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有 种解析:某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,可以分情况讨论, 甲、丙同去,则乙不去,有=240种选法;甲、丙同不去,乙去,有=240种选法;甲、乙、丙都不去,有种选法,共有600种不同的选派方案例12(06天津卷)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不

16、小于该盒子的编号,则不同的放球方法有()A10种B20种C36种 D52种解析:将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,分情况讨论:1号盒子中放1个球,其余3个放入2号盒子,有种方法;1号盒子中放2个球,其余2个放入2号盒子,有种方法;则不同的放球方法有10种,选A 说明:元素多,取出的情况也多种,可按要求分成互不相容的几类情况分别计算,最后总计。5、交叉问题,集合法(二元否定问题,依次分类)。例14、某天的课表要排入语文、数学、英语、物理、化学、体育共六门课程,且上午安排四节课,下午安排两节课。(1)若第一节不排体育,下午第一节

17、不排数学,一共有多少种不同的排课方法?(2)若要求数学、物理、化学不能排在一起(上午第四节与下午第一节不算连排),一共有多少种不同的排课方法?例15、同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡不同的分配方式有( )A)6种 B)9种 C)11种 D)23种解:此题可以看成是将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一数,且每个方格的标号与所填数字不同的填法问题。所以先将1填入2至4的3个方格里有3种填法;第二步把被填入方格的对应数字填入其它3个方格,又有3种填法;第三步将余下的两个数字填入余下的两格中只有一种填法,故共有331=9

18、种填法。故选B说明:求解二元否定问题可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依此即可完成。例16、(06湖北卷)安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的总数是 .(用数字作答) 。(答:78种)说明:某些排列组合问题几部分之间有交集,可用集合中求元素的个数的公式来求解。7、至少问题,分类法 或 间接法(排除处理)例18(06福建卷)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有解析:从全部方案中减去只选派男生的方案数,合理的选派方案共有=186种,选B.例19(06辽宁卷)5

19、名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有一名老队员,且1、2号中至少有1名新队员的排法有_种.(以数作答) 【解析】两老一新时, 有种排法;两新一老时, 有种排法,即共有48种排法.【点评】本题考查了有限制条件的排列组合问题以及分类讨论思想.例20(06重庆卷)将5名实习教师分配到高一年级的个班实习,每班至少名,最多名,则不同的分配方案有解析:将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则将5名教师分成三组,一组1人,另两组都是2人,有种方法,再将3组分到3个班,共有种不同的分配方案说明:含“至多”

20、或“至少”的排列组合问题,是需要分类问题,或排除法。排除法,适用于反面情况明确且易于计算的情况。9分组问题与分配问题分组问题:均匀分组,除法处理;非均匀分组,组合处理例22。有9个不同的文具盒:(1)将其平均分成三组;(2)将其分成三组,每组个数2,3,4。上述问题各有多少种不同的分法?分析:(1)此题属于分组问题:先取3个为第一组,有 种分法,再取3个不第二组,有种分法,剩下3个为第三组,有 种分法,由于三组之间没有顺序,故有种分法。(2)同(1),共有种分法,因三组个数各不相同,故不必再除以。练习:12个学生平均分成3组,参加制作航空模型活动,3个教师各参加一组进行指导,问有多少种分组方法

21、?分配问题: 定额分配,组合处理; 随机分配,先组后排。例23。有9本不同的书:(1)分给甲2本,乙3本,丙4本;(2)分给三个人,分别得2本,3本,4本。上述问题各有多少种不同的分法?(1)此题是定额分配问题,先让甲选,有种;再让乙选,有种;剩下的给丙,有种,共有种不同的分法(2)此题是随机分配问题:先将9本书分成2本,3本,4本共有三堆,再将三堆分给三个人,共有种不同的分法。例24:对某种产品的6件不同正品和4件不同次品一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时被全部发现,则这样的测试方法有多少种可能?解:第5次必测出一次品,余下3件次品在前4次被测出,从4件中确定最

22、后一件次品有种方法,前4次中应有1件正品、3件次品,有种,前4次测试中的顺序有种,由分步计数原理即得:()576。【评述】本题涉及一类重要问题:问题中既有元素的限制,又有排列的问题,一般是先选元素(即组合)后排列练习:1。3名教师分配到6个班里,各人教不同的班级,若每人教2个班,有多少种分配方法? 2将10本不同的专著分成3本,3本,3本和1本,分别交给4位学者阅读,问有多少种不同的分法?例25(06湖南卷)某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( ) A.16种 B.36种 C.42种 D.60种解析:有两种情况,一是在两个城市分别投资1个项目、2个项目,此时有, 二是在在两个城市分别投资1,1,1个项目,此时有, 共有=60, 故选 (D)

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号