勾股定理-第07讲与应用学.docx

上传人:小飞机 文档编号:4525517 上传时间:2023-04-26 格式:DOCX 页数:5 大小:103.74KB
返回 下载 相关 举报
勾股定理-第07讲与应用学.docx_第1页
第1页 / 共5页
勾股定理-第07讲与应用学.docx_第2页
第2页 / 共5页
勾股定理-第07讲与应用学.docx_第3页
第3页 / 共5页
勾股定理-第07讲与应用学.docx_第4页
第4页 / 共5页
勾股定理-第07讲与应用学.docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《勾股定理-第07讲与应用学.docx》由会员分享,可在线阅读,更多相关《勾股定理-第07讲与应用学.docx(5页珍藏版)》请在三一办公上搜索。

1、第七讲 勾股定理与应用在课内我们学过了勾股定理及它的逆定理勾股定理 直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2勾股定理逆定理 如果三角形三边长a,b,c有下面关系:a2+b2=c2那么这个三角形是直角三角形早在3000年前,我国已有“勾广三,股修四,径阳五”的说法关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的下面的证法1是欧几里得证法证法1 如图2-16所示在RtABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2下面证明,大正方形的面积等于两个小正方形的面积之和过C引CMBD,交AB于L,连接BG,C

2、E因为AB=AE,AC=AG,CAE=BAG,所以ACEAGB(SAS)而所以 SAEML=b2 同理可证 SBLMD=a2 +得SABDE=SAEML+SBLMD=b2+a2,即 c2=a2+b2证法2 如图2-17所示将RtABC的两条直角边CA,CB分别延长到D,F,使AD=a,BF=b完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB由作图易知ADGGEHHFBABC,所以AG=GH=HB=AB=c,BAG=AGH=GHB=HBA=90,因此,AGHB为边长是c的正方形显然,正方形CDEF的面积等于正方形AGHB的面积与四个全等的

3、直角三角形(ABC,ADG,GEH,HFB)的面积和,即化简得 a2+b2=c2证法3 如图2-18在直角三角形ABC的斜边AB上向外作正方形ABDE,延长CB,自E作EGCB延长线于G,自D作DKCB延长线于K,又作AF, DH分别垂直EG于F,H由作图不难证明,下述各直角三角形均与RtABC全等:AFEEHDBKDACB设五边形ACKDE的面积为S,一方面S=SABDE+2SABC, 另一方面S=SACGF+SHGKD+2SABC 由,所以 c2=a2+b2关于勾股定理,在我国古代还有很多类似上述拼图求积的证明方法,我们将在习题中展示其中一小部分,它们都以中国古代数学家的名字命名利用勾股定

4、理,在一般三角形中,可以得到一个更一般的结论定理 在三角形中,锐角(或钝角)所对的边的平方等于另外两边的平方和,减去(或加上)这两边中的一边与另一边在这边(或其延长线)上的射影的乘积的2倍证 (1)设角C为锐角,如图2-19所示作ADBC于D, 则CD就是AC在BC上的射影在直角三角形ABD中,AB2=AD2+BD2, 在直角三角形ACD中,AD2=AC2-CD2, 又BD2=(BC-CD)2, ,代入得AB2=(AC2-CD2)+(BC-CD)2=AC2-CD2+BC2+CD2-2BCCD=AC2+BC2-2BCCD,即c2=a2+b2-2aCD (2)设角C为钝角,如图2-20所示过A作A

5、D与BC延长线垂直于D,则CD就是AC在BC(延长线)上的射影在直角三角形ABD中,AB2=AD2+BD2, 在直角三角形ACD中,AD2=AC2-CD2, 又BD2=(BC+CD)2, 将,代入得AB2=(AC2-CD2)+(BC+CD)2=AC2-CD2+BC2+CD2+2BCCD=AC2+BC2+2BCCD,即c2=a2+b2+2acd 综合,就是我们所需要的结论特别地,当C=90时,CD=0,上述结论正是勾股定理的表述:c2=a2+b2因此,我们常又称此定理为广勾股定理(意思是勾股定理在一般三角形中的推广)由广勾股定理我们可以自然地推导出三角形三边关系对于角的影响在ABC中,(1)若c

6、2=a2+b2,则C=90;(2)若c2a2+b2,则C90;(3)若c2a2+b2,则C90勾股定理及广勾股定理深刻地揭示了三角形内部的边角关系,因此在解决三角形(及多边形)的问题中有着广泛的应用例1 如图2-21所示已知:在正方形ABCD中,BAC的平分线交BC于E,作EFAC于F,作FGAB于G求证:AB2=2FG2例2 如图2-22所示AM是ABC的BC边上的中线,求证:AB2+AC2=2(AM2+BM2)例3 如图2-23所示求证:任意四边形四条边的平方和等于对角线的平方和加对角线中点连线平方的4倍例4 如图2-24所示已知ABC中,C=90,D,E分别是BC,AC上的任意一点求证:

7、AD2+BE2=AB2+DE2例5 求证:在直角三角形中两条直角边上的中线的平方和的4倍等于斜边平方的5倍如图2-25所示设直角三角形ABC中,C=90,AM,BN分别是BC,AC边上的中线求证:4(AM2+BN2)=5AB2练习十一1用下面各图验证勾股定理(虚线代表辅助线):(1)赵君卿图(图2-27);(2)项名达图(2-28);(3)杨作枚图(图2-29)2已知矩形ABCD,P为矩形所在平面内的任意一点,求证:PA2+PC2=PB2+PD2(提示:应分三种情形加以讨论,P在矩形内、P在矩形上、P在矩形外,均有这个结论)3由ABC内任意一点O向三边BC,CA,AB分别作垂线,垂足分别是D,E,F求证:AF2+BD2+CE2=FB2+DC2+EA24如图2-30所示在四边形ADBC中,对角线ABCD求证:AC2+BD2=AD2+BC2它的逆定理是否成立?证明你的结论5如图2-31所示从锐角三角形ABC的顶点B,C分别向对边作垂线BE,CF求证:BC2=ABBF+ACCE

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号