《中考数学近三年二次函数压轴题精选.doc》由会员分享,可在线阅读,更多相关《中考数学近三年二次函数压轴题精选.doc(6页珍藏版)》请在三一办公上搜索。
1、中考数学近三年二次函数压轴题精选(含答案)1如图,二次函数的图象经过点D,与x轴交于A、B两点求的值;如图,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式;设点P、Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P、Q,使AQPABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由(图供选用)2(2010福建福州)如图,在ABC中,C45,BC10,高AD8,矩形EFPQ的一边QP在BC边上,E、F两点分别在AB、AC上,AD交EF于点H (1)求证:; (2)设EFx,当x为何
2、值时,矩形EFPQ的面积最大?并求其最大值;(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFFQ与ABC重叠部分的面积为S,求S与t的函数关系式(第2题)3(2010福建福州)如图1,在平面直角坐标系中,点B在直线y2x上,过点B作x轴的垂线,垂足为A,OA5若抛物线yx2bxc过O、A两点(1)求该抛物线的解析式;(2)若A点关于直线y2x的对称点为C,判断点C是否在该抛物线上,并说明理由;(3)如图2,在(2)的条件下,O1是以BC为直径的圆过原点O作O1的切线OP,P为切点(点P与点C不重合)
3、抛物线上是否存在点Q,使得以PQ为直径的圆与O1相切?若存在,求出点Q的横坐标;若不存在,请说明理由(图1) (图2)4(2010江苏无锡)如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=设直线AC与直线x=4交于点E(1)求以直线x=4为对称轴,过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E;(2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动点,求CMN面积的最大值5(2010湖南邵阳)如图,抛物线y与x轴交于点A、B,与y轴相交于点C,顶点为点D,对称轴l与直线BC相交于点E,与x轴交于点F。(1)求直线BC的解析式;(
4、2)设点P为该抛物线上的一个动点,以点P为圆心,r为半径作P。当点P运动到点D时,若P与直线BC相交 ,求r的取值范围;若r=,是否存在点P使P与直线BC相切,若存在,请求出点P的坐标;若不存在,请说明理由6(2010年上海)如图1,已知平面直角坐标系xOy,抛物线yx2bxc过点A(4,0)、B(1,3) .(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l,设抛物线上的点P(m,n)在第四象限,点P关于直线l的对称点为E,点E关于y轴的对称点为F,若四边形OAPF的面积为20,求m、n的值.图17(2010重庆綦江县)已知抛物线yax2bxc(a0
5、)的图象经过点B(12,0)和C(0,6),对称轴为x2(1)求该抛物线的解析式;(2)点D在线段AB上且ADAC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若不存在,请说明理由;(3)在(2)的结论下,直线x1上是否存在点M使,MPQ为等腰三角形?若存在,请求出所有点M的坐标,若不存在,请说明理由8(2010山东临沂)如图,二次函数的图象与轴交于,两点,且与轴交于点.(1)求该抛物线的解析式,并判断的形状;(2)在轴上方的抛
6、物线上有一点,且以四点为顶点的四边形是等腰梯形,请直接写出点的坐标;第8题图(3)在此抛物线上是否存在点,使得以四点为顶点的四边形是直角梯形?若存在,求出点的坐标;若不存在,说明理由.9(2010四川宜宾)将直角边长为6的等腰RtAOC放在平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(3,0)(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当APE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使AGC的面积与(2)中APE的最大面积相等?若存在,请求出点G的坐标;
7、若不存在,请说明理由12(2010 山东省) (已知二次函数的图象经过点A(3,0),B(2,-3),C(0,-3)(1)求此函数的解析式及图象的对称轴;xyOABCPQMN第12题图(2)点P从B点出发以每秒0.1个单位的速度沿线段BC向C点运动,点Q从O点出发以相同的速度沿线段OA向A点运动,其中一个动点到达端点时,另一个也随之停止运动设运动时间为t秒当t为何值时,四边形ABPQ为等腰梯形;设PQ与对称轴的交点为M,过M点作x轴的平行线交AB于点N,设四边形ANPQ的面积为S,求面积S关于时间t的函数解析式,并指出t的取值范围;当t为何值时,S有最大值或最小值13(2010 山东莱芜)如图
8、,在平面直角坐标系中,已知抛物线交轴于两点,交轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线交于点D,作D与x轴相切,D交轴于点E、F两点,求劣弧EF的长;(第24题图)xyOACBDEF(3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得PGA的面积被直线AC分为12两部分.14(2010 广东珠海)如图,平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6);将BCD沿BD折叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD的点F上.(1)直接写出ABE、
9、CBD的度数,并求折痕BD所在直线的函数解析式;(2)过F点作FGx轴,垂足为G,FG的中点为H,若抛物线经过B、H、D三点,求抛物线的函数解析式; (3)若点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PNBC分别交BC和BD于点N、M,设h=PM-MN,试求出h与P点横坐标x的函数解析式,并画出该函数的简图,分别写出使PMMN成立的x的取值范围。15(2010福建宁德)如图,在梯形ABCD中,ADBC,B90,BC6,AD3,DCB30.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边EFG设
10、E点移动距离为x(x0).EFG的边长是_(用含有x的代数式表示),当x2时,点G的位置在_;若EFG与梯形ABCD重叠部分面积是y,求当0x2时,y与x之间的函数关系式;当2x6时,y与x之间的函数关系式;探求中得到的函数y在x取含何值时,存在最大值,并求出最大值.B E F CA DG16(2010江西)如图,已知经过原点的抛物线y=-2x2+4x与x轴的另一交点为A,现将它向右平移m(m0)个单位,所得抛物线与x轴交与C、D两点,与原抛物线交与点P.(1)求点A的坐标,并判断PCA存在时它的形状(不要求说理)(2)在x轴上是否存在两条相等的线段,若存在,请一一找出,并写出它们的长度(可用
11、含m的式子表示);若不存在,请说明理由;DGH(3)CDP的面积为S,求S关于m的关系式。xyDACOP17(2010 武汉 )如图1,抛物线经过点A(1,0),C(0,)两点,且与x轴的另一交点为点B(1)求抛物线解析式; (2)若抛物线的顶点为点M,点P为线段AB上一动点(不与B重合),Q在线段MB上移动,且MPQ=45,设OP=x,MQ=,求于x的函数关系式,并且直接写出自变量的取值范围;(3)如图2,在同一平面直角坐标系中,若两条直线x=m,x=n分别与抛物线交于E、G两点,与(2)中的函数图像交于F、H两点,问四边形EFHG能否为平行四边形?若能,求出m、n之间的数量关系;若不能,请
12、说明理由图 1图 218(2010四川 巴中)如图12已知ABC中,ACB90以AB 所在直线为x 轴,过c 点的直线为y 轴建立平面直角坐标系此时,A 点坐标为(一1 , 0), B 点坐标为(4,0 ) (1)试求点C 的坐标(2)若抛物线过ABC的三个顶点,求抛物线的解析式(3)点D( 1,m )在抛物线上,过点A 的直线y=x1 交(2)中的抛物线于点E,那么在x轴上点B 的左侧是否存在点P,使以P、B、D为顶点的三角形与ABE 相似?若存在,求出P点坐标;若不存在,说明理由。19(2010浙江湖州)如图,已知在直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OAAB2
13、,OC3,过点B作BDBC,交OA于点D,将DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴于E和F(1)求经过A,B,C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)连接EF,设BEF与BFC的面积之差为S,问:当CF为何值时S最小,并求出这个最小值. 20(2010江苏常州)如图,已知二次函数的图像与轴相交于点A、C,与轴相较于点B,A(),且AOBBOC。(1)求C点坐标、ABC的度数及二次函数的关系是;(2)在线段AC上是否存在点M()。使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,
14、求出的值;若不存在,请说明理由。21(2010江苏常州)如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP-CQ。设AP=(1)当PQAD时,求的值;(2)当线段PQ的垂直平分线与BC边相交时,求的取值范围;(3)当线段PQ的垂直平分线与BC相交时,设交点为E,连接EP、EQ,设EPQ的面积为S,求S关于的函数关系式,并写出S的取值范围。22(2010 山东滨州)如图,四边形ABCD是菱形,点D的坐标是,以点C为顶点的抛物线 恰好经过轴上A、B两点(1)求A、B、C三点的坐标;(2) 求经过A、B、C三点的的
15、抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少各单位?23(2010湖北荆门)已知一次函数y的图象与x轴交于点A与轴交于点;二次函数图象与一次函数y的图象交于、两点,与轴交于、两点且点的坐标为(1)求二次函数的解析式;(2)求四边形BDEF的面积S;(3)在轴上是否存在点P,使得是以为直角顶点的直角三角形?若存在,求出所有的点,若不存在,请说明理由。24(2010 四川成都)在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,若将经过两点的直线沿轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线(1
16、)求直线及抛物线的函数表达式;(2)如果P是线段上一点,设、的面积分别为、,且,求点P的坐标;(3)设Q的半径为l,圆心在抛物线上运动,则在运动过程中是否存在Q与坐标轴相切的情况?若存在,求出圆心的坐标;若不存在,请说明理由并探究:若设Q的半径为,圆心在抛物线上运动,则当取何值时,Q与两坐轴同时相切?25(2010山东潍坊)如图所示,抛物线与x轴交于A(1,0)、B(3,0)两点,与y轴交于C(0,3)以AB为直径做M,过抛物线上的一点P作M的切线PD,切点为D,并与M的切线AE相交于点E连接DM并延长交M于点N,连接AN(1)求抛物线所对应的函数的解析式及抛物线的顶点坐标;(2)若四边形EAMD的面积为4,求直线PD的函数关系式;(3)抛物线上是否存在点P,使得四边形EAMD的面积等于DAN的面积?若存在,求出点P的坐标,若不存在,说明理由