《完全平方公式的综合应用精编版.doc》由会员分享,可在线阅读,更多相关《完全平方公式的综合应用精编版.doc(5页珍藏版)》请在三一办公上搜索。
1、“完全平方公式变形的应用”培优题 姓名:完全平方式常见的变形有:(1) (2) (3)(4)1、已知m2+n2-6m+10n+34=0,求m+n的值2、 已知,都是有理数,求的值。练一练 A组: 1已知求与的值。 2已知求与的值。3、 已知求与的值。4、 已知(a+b)2=60,(a-b)2=80,求a2+b2及ab的值B组:5 已知,求的值。6 已知,求的值。7 已知,求的值。8、,求(1)(2)C组:10、已知三角形ABC的三边长分别为a,b,c且a,b,c满足等式,请说明该三角形是什么三角形? 整式的乘法、平方差公式、完全平方公式、整式的除法(B卷) 综合运用题 姓名:一、请准确填空1、
2、若a2+b22a+2b+2=0,则a2004+b2005=_.2、一个长方形的长为(2a+3b),宽为(2a3b),则长方形的面积为_.3、5(ab)2的最大值是_,当5(ab)2取最大值时,a与b的关系是_.4.要使式子0.36x2+y2成为一个完全平方式,则应加上_.5.(4am+16am)2am1=_.6.2931(302+1)=_.7.已知x25x+1=0,则x2+=_.8.已知(2005a)(2003a)=1000,请你猜想(2005a)2+(2003a)2=_.二、相信你的选择9.若x2xm=(xm)(x+1)且x0,则m等于A.1B.0C.1D.210.(x+a)与(x+)的积不
3、含x的一次项,猜测a应是A.5B.C.D.511.下列四个算式:4x2y4xy=xy3;16a6b4c8a3b2=2a2b2c;9x8y23x3y=3x5y; (12m3+8m24m)(2m)=6m2+4m+2,其中正确的有A.0个B.1个C.2个D.3个12.设(xm1yn+2)(x5my2)=x5y3,则mn的值为A.1B.1C.3D.313.计算(a2b2)(a2+b2)2等于A.a42a2b2+b4 B.a6+2a4b4+b6 C.a62a4b4+b6 D.a82a4b4+b814.已知(a+b)2=11,ab=2,则(ab)2的值是A.11B.3C.5D.1915.若x27xy+M是
4、一个完全平方式,那么M是A.y2B.y2C.y2D.49y216.若x,y互为不等于0的相反数,n为正整数,你认为正确的是A.xn、yn一定是互为相反数 B.()n、()n一定是互为相反数C.x2n、y2n一定是互为相反数 D.x2n1、y2n1一定相等三、考查你的基本功17.计算(1)(a2b+3c)2(a+2b3c)2;(2) ab(3b)2a(bb2)(3a2b3);(3) 21000.5100(1)2005(1)5;(4) (x+2y)(x2y)+4(xy)26x6x.18.(6分)解方程x(9x5)(3x1)(3x+1)=5. “整体思想”在整式运算中的运用 “整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,有些问题局部求解各个击破,无法解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,思路清淅,演算简单,复杂问题迎刃而解,现就“整体思想”在整式运算中的运用,略举几例解析如下,供同学们参考:1、当代数式的值为7时,求代数式的值.2、 已知,求:代数式的值。3、已知,求代数式的值4、已知时,代数式,求当时,代数式 的值5、若,试比较M与N的大小6、已知,求的值.