[高等教育]采区供电设计电子版.doc

上传人:sccc 文档编号:4563134 上传时间:2023-04-27 格式:DOC 页数:36 大小:977.50KB
返回 下载 相关 举报
[高等教育]采区供电设计电子版.doc_第1页
第1页 / 共36页
[高等教育]采区供电设计电子版.doc_第2页
第2页 / 共36页
[高等教育]采区供电设计电子版.doc_第3页
第3页 / 共36页
[高等教育]采区供电设计电子版.doc_第4页
第4页 / 共36页
[高等教育]采区供电设计电子版.doc_第5页
第5页 / 共36页
点击查看更多>>
资源描述

《[高等教育]采区供电设计电子版.doc》由会员分享,可在线阅读,更多相关《[高等教育]采区供电设计电子版.doc(36页珍藏版)》请在三一办公上搜索。

1、辽宁工程技术大学职业技术学院设计(论文)用纸 0 前言本设计书是根据辽工大职院机电设备维修与管理毕业设计要求与图纸配套而编写的毕业设计说明书。 学校安排的毕业设计,是对我们所学习专业知识的总结和运用,培养我们的自学能力和独立设计能力,机电设备维修与管理专业的设计是采用煤矿井下供电理论知识,具体解决煤矿井下供电设计的有关技术问题。 本设计是以清河门矿井下采区模拟负荷的资料为基础,遵循煤矿安全规程、煤矿工业设计规范、煤矿井下供电设计规定等技术要求,在保证安全、可靠的基础上进行经济技术比较,选择最佳方案。设备选型应采用定型成套设备,尽量采用新产品,积极采取措施减少损耗,节约能源。 本设计书共分六章,

2、第一章阐明了井下供电设计的目的、任务和要求;第二章按井下供电技术程序,对设计环节进行分析、阐明;第三章对井下高低压电缆的选择进行确定、并对支线和干线电缆的选择进行效验,电缆芯线截面按机械强度和允许电压损失进行选择;第四章对井下短路电流进行计算,并对高、低压电网的短路参数进行计算;第五章对井下电气设备高低压进行选择,分别按工作条件、工作电压、短路容量、动热稳定性条件进行校验;第六章对井下漏电保护及接地系统的整定,并对采区供电设计的几个问题进行分析,并提出解决方法。 由于编者知识水平有限,本设计书难免有错误和不妥之处,恳求广大读者批评指正。 编者:2008年6月20日1 1采区供电技术概况1.1

3、采区供电技术的目的、要求及任务 采区供电是整个井下供电的一个重要组成部分,同时也是井下采煤机械化,电气化的物质基础,他对整个采区的正常生产和安全影响极大。因此,正确地进行采区供电设计是十分必要的.1.1.1采区供电设计的目的井下采区供电设计的目的是应用煤矿井下供电理论知识具体解决井下供电的技术问题,使学生学会查阅技术资料和各种文献的方法,培养计算数据,绘制图表,编写技术资料的能力,掌握井下供电技术的技术经济政策及安全规程的规定,完成井下采区供电设计的内容及对机电技术员的基本训练。采区用电设备技术特征表如表1-1。用电设备名称电动机型号设备台数电动机额定功率/kw每台设备电动机数额定电压额定电流

4、/A额定功率因数工作启动工作启动综采设备SML3-340采煤机DMB-170S217021140100.16880.86SGB-764/264型可弯曲刮板运输机YBYC132KW-421102114068.67790.85SSJ100/|125可伸缩带式输送机JDSB-1252125166032.9213.80.86XR213-45乳化泵JB3-250m-44451114026.8187.70.83JD11.4调度绞车JBJQ-11.4611.4166012.9720.87SZB-764/132型转载机YBYC132KW-421101114065.5458.80.85JH-14J回柱绞车BJQ

5、271-6217166019930.85XPB250/喷雾泵JB3-180L-4230166031.24218.70.84BZ80-2.5煤电钻MZ2-1221.216603.20.84上山运输设备SDJ-800皮带机DSB-752402114023.56164.90.861-1 采区设备技术特征表Table1-1 mining area equipment technical characteristics of table1.1.2 对井下采区供电设计的基本要求1)设计要符合煤矿安全规程、煤矿工业设计规范和煤矿井下供电等规程和技术资料2)设计遵循煤矿工业建设的方针政策,在保证供电安全可靠的

6、基础上进行技术经济比较,选择最佳方案。 3)设备选型时,应采用定型的成套设备,尽量采用新技术,新产品,国产设备,积极采取措施,减少电能损耗,节约能源。 4)技术质量确定技术的先进性,经济的合理性,安全的适用性。1.1.3采区供电设计的任务 1)采区变电所和工作面配电点位置的确定。 2)采区供电系统的拟订。 3)采区变电所的负荷统计及变压器容量、型号、台数的选择。 4)采区高压电缆的选择。 5)采区低压电缆的选择。 6)采区电网短路电流的计算。 7)采区高低压配电装置的选择。 8)采区高、低压开关保护装置的整定计算。 9)井下漏电保护及井下保护接地系统。 10)采区变电所的硐室及设备布置。 11

7、)编制设计说明书及绘制图纸的要求。1.1.4 采区供电设计说明要求1)设计说明书应反映出设计人员的基本设计思想,设计方法和步骤,给出主要计算公式和设备选择结论及技术特征。2)设计中设备选择结果应以表格形式反映,避免重复。3)设计说明书内容完整,计算准确,字迹清晰,图示清楚按规定格式打印输出,设计图纸清晰整洁。 4)设计说明书须附英文内容摘要。2 采区变电所的位置、供电系统及主变压器的选择确定2.1变电所及配电点位置的确定2.1.1采区变电所的位置确定采区变电所是采区供电的中心,它担负着整个采区的采电、配电、变电任务。采区变电所的位置决定于低压供电电压、供电距离、采煤方法及采区巷道布置方式、机械

8、化程度、采区机组的容量大小等因素。在确定采区变电所的位置时,首先应按工作面的机械化程度和供电质量要求,选择采区供电电压以及移动变电所的设置地点。根据机械化工作面采煤机组功率大小,供电距离比其他机械设备远且启动频率,重载启动等特点,要求工作面输送机、采煤机和采煤机组的电动机启动允许电压损失应符合要求。保证机组启动时有足够的启动力矩。同时,要求保证机组控制开关在机组电动机启动时有足够吸合能力。 一般来说,炮采工作面选择380V或660V供电;普通机械化采煤工作面选择660V供电,综合机械化采煤工作面选择1140V供电,我们本次设计的采煤工作面为综采工作面,采用移动变电站供电。本设计把采区变电所的位

9、置设置在运输斜巷与轨道斜巷之间的联络巷内。2.1.2移动变电站位置确定移动变电站是由特制的高压配电箱,干式变压器和低压配电装置组成的整体,安放在平车上,可在平巷的轨道上移动。采用移动变电站供电的优势是缩短低压供电距离,减少电压损失,随工作面的移动而移动。一般用于综采工作面供电。 移动变电站一般设置在工作面平巷,距工作面150m-300m,工作面每向前推进100m-200m,变电站向前移动一次,使综采工作面的低电压供电距离不超过500m。移动变电站的设置原则是靠近负荷中心,同时考虑安全性和经济性。设置在运输平巷,其优点是靠近负荷中心;缺点是加大巷道断面,增大开拓费用和维护费用。设置在回风平巷,其

10、优点是不需要专设轨道和增大巷道断面;缺点是远离运输平巷的输送机,而且在专用回风巷内不得设置移动变电站。设置在下一个工作面的回风平巷与本工作面运输平巷的联络巷内,其优点是既能位于负荷中心,又不需增大巷道断面;缺点是必须在采掘可以衔接的情况下选用。设置在运输平巷的入口处轨道上山与材料上山的联络巷内,其优点是不需要增大巷道断面;缺点是距离工作面较远,在供电质量满足要求的情况下选用。 本设计采用布置方式的第一种,设置在运输平巷中。2.1.3工作面配电点位置的确定 工作面配电点是将移动变电站送来的1140V或660V电能分配给采区工作面或掘进工作面的用电设备。1)工作面配电点的位置及设备布置: 为保证安

11、全,采煤工作面配电点一般设在距工作面50m-70m处的巷道中,工作面设备的控制开关应放在工作面配电点,采用远方控制。本次设计把采煤工作面配电点设置距工作面70m处巷道内。2)配电点开关的设置: 工作面配电点设在控制工作面各种设备的电磁启动器以及煤电钻综合保护装置处。3台以及以上开关的配电点都需要设置自动馈电开关。实现断电检修和维护,保证人身安全。2.1.4采区变电所硐室及设备布置1)对硐室的要求: 采区变电所硐室必须用耐火材料建筑,硐室出口附近地区5m之内的巷道支架应用耐火材料支护。硐室出口处必须设置两重门,既铁板门和铁栅门,铁栅门在平时关闭,铁板门平时向外敞开,当硐室内发生火灾时,铁板门应能

12、自动或手动关闭。为了通风良好,煤矿安全规程规定硐室长度超过6m时,必须在硐室两端各设一个出口,硐室内最高温度不得超过巷道中温度的5。硐室内敷设的电缆,根据煤矿安全规程规定要将黄麻外皮剥除掉,同时应定期在铠装层上加涂防锈油漆,硐室内应设有砂袋,砂箱及干式灭火器材。2)硐室内设置布置的要求: 硐室内的高低压配电设备应分开设置,其间应留有大于0.8m的过道,电缆线路沿硐室墙壁敷设。硐室内所有电器设备的外壳要求有良好的接地,接地干线沿硐室内墙壁敷设,距地面一般0.5m,接地极埋设在附近水沟硐室中或有潮湿的地段,接地干线与井下主接地系统相联。变电所硐室尺寸,按设备数量及布置方式确定,一般不留设备位置。硐

13、室内一不设电缆沟,电缆沿墙壁挂设。穿过硐室密门处需用60mm的 焊接钢管保护。硐室内照明设备采用KBY-15型15W127V的照明灯,灯距为4m,采用V-1000型电缆沿硐室拱顶敷设。硐室内高压电气设备必须在明显处挂有“高压危险”的告示牌,在硐室入口处应挂有类似告示牌,无人值班的硐室必须关门加锁。安装在巷道内的移动变电站或平车上的综合机械化采煤工作面的机电设备,对突出部分应根据煤矿安全规程与巷道支护之间的距离不小于0.25m,同输送机的距离应满足设备检查、检修的需要,并不得小于0.7m。2.2 采区变电所的负荷统计及变压器型号、容量、台数的选择确定 2.2.1 移动变电站台数的选择使用采区变电

14、所负荷统计,根据采区开拓、开采方法、系统的运行方式、负荷原则首先确定每台变压器担负的负荷进行负荷统计列表2-2。用需要系数法统计:由于工作条件的变化用电设备实际负荷随时都在变化,又由于生产环节的不同,在一组电气设备中,同时工作的实际台数可能小于其总台数。所以每组用电设备总的实际负荷P,总是小于该组总的额定负荷Pn。将实际负荷与额定负荷的比值用需用系数Kde 表示。综合机械化采煤工作面需用系数按经验公式计算见煤矿电工学19页(7-1)负荷名称设备台数用电设备额定容量(kw)额定电压U需用系数功率因数计算负荷工作电流备注有功功率/KW无功功率Kvar视在功率KVA额定电流A计算电流A工作面设备选一

15、台KBSGZY-800/6型隔爆移动变电站采煤机1170211400.86100.12可弯曲刮板输送机1110211400.8568.62乳化泵14511400.8326.8转载机111011400.8565.5皮带机142211400.8623.52工作面变压器计算负荷79511400.640.7537.6548.5768380变压器损耗3.4922.14工作面计算负荷79560000.680.7541.09551.9772.9874.3顺槽的设备选一台KBSGZY-315/6型隔爆移动变电站可伸缩带式输送机11256600.8632.9调度绞车311.436600.8712.9回柱绞车11

16、76600.8519喷雾泵站1306600.8431.24煤电钻11.26600.833.2顺槽变压器计算核207.46600.760.7157.6160.7225.1196.8变压器损耗1.689.5顺槽的计算负荷207.460000.760.7159.3162.7227.521.91#综采工作面负荷计算1002.46000700.6714.41000.4896.21#综采工作面计算负荷1002.460000.690.7700.6714.41000.4896.2表2-2移动变电站的选择结果及负荷统计Table2-2 Mining District equipment technical ch

17、aracteristics of table Kde=0.4+0.6 (2-1)式中:Pnmax所带负荷中容量最大的一台电动机额定功率KW Pn所带负荷的额定功率之和根据需用系数即可求出成组负荷,称之为计算负荷Pca,其计算公式为: Pca= KdePn (2-2) 式中:Pca成组负荷的计算功率 KW Kde成组负荷的需用系数成组负荷的计算: 第一组: Kde=0.4+0.6=0.6+0.4=0.64KW Pn= 1702+1102+402+452+110=840KW Pca= KdePn=0.64840=537.6KW 第二组计算方法同上,结果为: Pca=157.62KW变压器(移动变电

18、站)型号的选择确定原则:在确定移动变电站型号时,应考虑国产矿用变压器的电压等级和容量,同时应根据巷道断面、运输条件及备用容量等因素,对选用方案进行经济比较,选取最佳方案。矿用动力变压器:目前我国煤矿井下主变电所及采区变电所内使用的动力变压器主要是KSJ及KSJL系列。均为矿用一般型设备,允许安装在无易燃,易爆性气体的环境中。矿用隔爆型干式变压器:KSG及KSGLZ系列矿用隔爆干式变压器主要用于有易燃及易爆性危险的场合,如井下采掘工作面等处。KSGB矿用隔爆型干式变压器用于有甲烷混合气体和煤尘,具有爆炸危险的矿井中,作为煤矿井下综合机械化采掘成套设备的主要供配电装置。隔爆移动变电站:KSGZY型

19、矿用隔爆千伏级移动变电站是根据我国煤矿井下采煤方式,由炮采及普通机械化采煤逐渐向综合机械化发展的需要而研制的一种成套高档供电设备,该设备即可用于综合机械化采煤工作面,也可在普通机械化660V采区推广。2.2.2移动变电站的台数的确定移动变电站的容量选择:1移动变电站输出电压为0.692KV,给SSJ1000/125型可伸缩带式输送机、JD11.4调度绞车、JH-14J回柱绞车、XPB250-55型喷雾泵、B280-2.5煤电钻供电。2# 移动变电站输出电压为1.2kv,给SML3-340型采煤机,SGD630/220可弯曲刮板输送机,SDJ800型固定带式输送机,顺槽转载机,XR213-45型

20、乳化泵。选择向工作面供电的移动变电站(2#移动变电站): Kde=0.4+0.6 计算需用系数 (2-3) P=1702+1102+402+452+110=840kW K=0.4+0.6=KWPs容量最大的电动机的额定功率(因两台电动机同时启动故按一台对待) Sca (2-4) Ica= (2-5)wm变压器负载的加权平均功率因数,查表2-2得wm=0.7工矿企业供电查表选择KBSGZY-800/6型隔爆移动变电站1台,其额定容量Sn.t=800,额定电压为6KV/1.2KV选择向顺槽供电的移动(1#移动变电站)计算方法同上,查表选择KBSGZY-315/6型隔爆移动变电站一台,其额定容量S=

21、315,额定电压为6/0.693KV 。 KBSGZY-800/6型移动变电站的计算 移动变电站的负荷率: 移动变电站的有功损耗: =2.3+5.20.482 =3.49移动变电站的无功率损耗 : = =22.14KBSGZY-315/6型移动变电站的计算:移动变电站的负荷率: 移动变电站的有功损耗: =1.4+2.20.362 =1.68移动变电站的无功损耗: = =7.875+1.632 =9.6 3 高低压电缆的选择3.1 井下高压动力电缆的选择确定3.1.1 井下高压电缆选择确定原则1)按经济电流密度计算选定电缆截面,对于输送容量较大,年最大负荷利用小时数较高的高压电缆尤其应按经济电流

22、密度对其截面进行计算。2)按最大持续负荷电流校验电缆截面,如果向单台设备供电时,则可按设备的额定电流校验电缆截面。3)按系统最大运行方式时,发生的三相短路电流校验电缆的热稳定性,一般在电缆首端(馈出变电所母线)选定短路点。4)按正常负荷及有一条电缆发生故障时,分别校验电缆的电压损失。5)固定敷设的高压电缆型号应该按以下原则确定: 在立井井筒倾角45及其以上的井道内,应采取钢丝铠装不滴流铅包纸绝缘电缆,钢丝铠装交联聚乙烯绝缘电缆。在水平巷道或倾角45以下的井巷道内,采用钢丝铠装不滴流铅包纸绝缘电缆钢丝铠装交联聚乙烯绝缘电缆或钢带铠装铅包纸电缆在进风斜井下,井底车场及其附近,主变电所至采区变电所之

23、间的电缆,可以采用铝芯,其他地点必须采用铜芯电缆。 移动变电站应采用监视型屏蔽橡胶电缆。3.1.2 选择计算步骤1 确定电缆的长度:根据电缆长度的确定原则,确定电缆的长度:以采区变电所,移动变电站和采煤机的供电为例。确定电缆的长度。从采区变电站到移动变电站电缆的长度: L=20+20+1000-150=890M 从中央变电站到配电所的长度是: L=1.16000=6600M2 采区变电所至第一台变压器之间的电缆选择(1000m)按工作条件选电缆型号:见工矿企业供电P157页表76,选MYPTJ型电缆。按经济电流密度选定电缆截面 (3-1) 式中:A 导线经济截面积 线路正常工作时最大长时工作电

24、流/A 经济电流密度A/ (3-2) 式中: 负荷统计表总容量 根据工矿企业供电P171取2.25A/=43.5选取标准截面积50电缆按长时最大工作电流校验:50电缆工作电流148A=96.8A按允许电压损失校验:高压配电线路允许电压损失取5%。中取0.75电压损失为: =60000.05=300V线路实际电压损失为: U=IR=I (3-3)式中:I 高压电缆最大长时工作电流/A R 各线段单位长度电阻/kM S 各线段的导线截面 L 各线段的导线的长度kM 电缆芯线的导电率/m. U=V按短路条件校验热稳定性要求 SS (3-4)S= (3-5)式中 I 电缆首端最大运行方式时的三相短路电

25、流为9.6kA。 C 导体材料的热稳定系数C=,它与导体的电导率、密度、热容量和最大短时允许温升有关。短路电流的假想作用时间,s。S=42.5故S=50S=42.5合格满足要求。3.2 采区低压动力电缆的选择正确的选择低压动力电缆的型号,直接关系到供电的安全性、可靠性和经济性。3.2.1 选择确定原则1)在正常工作时电缆芯线的实际温度不得超过绝缘所允许的最高温升,否则电缆将因过热而缩短其使用寿命或迅速损坏。电缆芯线的实际温升决定它所流过负荷电流,因此,必须保证实际流过电缆的最大长时工作电流不超过它所允许的负荷电流。2)正常运行时电缆线路的实际电压损失必须不大于网路所允许的电压损失,其端电压不得

26、底于额定电压的95%。否则电动机等电气设备将因电压过低而过流,甚至过热而烧毁。3)距离电源最远、容量最大的电动机时,因启动电流过大而对电网造成的电压损失也最大。因此必须校验大容量电动机启动时,是否能保证其他用电设备所必须的最低电压,即进行启动条件校验。4)电缆的机械强度应满足要求,特别是对移动设备供电的电缆。根据现场长期工作经验,对不同用电设备要求电缆机械强度的允许截面见表223。采区经常移动的橡胶电缆支线的截面选择,一般按机械强度求的最小截面选取即可,不必进行其它项目的校验。对于干线电缆,则必须首先按允许电压损失计算确定电缆截面,然后再按长时允许电流及启动条件进行校验。5)对于低压电缆,由于

27、低压网路短路电流较小,按上述方法选择的电缆截面的热稳定性和电动力稳定性均能满足其要求,因此不必再进行短路时的热稳定校验。选择计算步骤:低压支线电缆的选择:根据煤矿井下供电设计指导1章2节所拟定的供电系统,确定系统中各段的电缆长度,在确定电缆长度时,橡胶电缆按10%余量考虑,铠装电缆按5%余量考虑。第一台移动变电站到采煤机的电缆的选择根据工矿企业供电P172表720,选择满足机械强度的最小截面为75。采煤机的额定电流为200A,根据工矿企业供电P165表712,选择满足其电流的值选择截面70,其载流量为205A额定电流200A,允许长时允许电流。考虑到用电设备的实际负荷一般均小于其额定负荷,所以

28、选择70的电流是合适的。再考虑到控制上的要求,最后确定选用MCP0.66/1.14370+135+36型采煤机用屏蔽橡套软电缆。从移动变电站供电的电缆,一般每段长100m。用插销式电缆连接器连接,这样可随移动变电站的移动方便的将电缆拆除或接入,所以选9段,总长度900m,考虑到电缆中间有8个接头及其两端与移动变电站的选择 ,电缆所需总长度为890+69=944m。因此选择总长度为1000m的电缆满足了供电距离的要求。3.2.2选择计算步骤向采煤机供电的支线电缆,考虑工作面长度150m,配电点与工作面的距离70m,则电缆长度L=K=1.1(150+70)=242m。再增加机头活动长度5M和启动器

29、连接处3m,所以确定电缆长度为250m刮板输送机的电缆长度: L=1.1(150+70)=242m带式输送机的电缆长度: L=1.170=77M,最后确定为80m转载机电缆的长度为80m固定带式输送机的电缆长度为1000m乳化泵到配电点的距离为30m从第一台变压器到可弯曲的刮板输送机支线电缆的选择根据工矿企业供电P172表720,选择满足机械强度的最小截面为16。刮板输送机的额定电流为137.2A,根据工矿企业供电P165表712,选择满足其电流值,选择面积为35,其载流量148A额定电流137.2A。考虑到用电设备的实际负荷一般均小于其额定负荷,所以选择35的电流是合适的。再考虑到控制上的要

30、求,最后确定选用MYP0.66/1.14335245m其他支线电缆截面积的选择方法同上,见表3-1用 电 设 备电 缆 型 号长 度/m乳化液泵MYP-0.66/1.14-31630刮板输送机MYP-0.66/1.14-335242采煤机MYP-0.66.1.14-370-135250带式输送机MYP-0.66/1.14-31070转载机MYP-0.66/1.14-31680固定胶带机MYP-0.66/1.14-3161000煤电钻 MYP-0.66/1.14-3102200回柱绞车MYP-0.66/1.14-3162170调度绞车MYP-0.66/1.14-31630表3-1 电缆的型号Ta

31、ble3-1 madel of cable36 辽宁工程技术大学职业技术学院设计(论文)用纸 4 井下短路电流的计算4.1 高压电网短路电流的计算4.1.1 计算短路电流的目的供电系统中,故障最多的是短路,尤其以三相短路最为严重,为了校验电气设备在短路电流作用下的电动力效应和热效应,避免短路事故扩大,因此,在井下供电系统中应计算三相短路电流,用来对高压配电装置切断电流值、断流容量值、热稳定性及高压的热稳定值进行校验。4.1.2 画出短路系统计算电路图图41 短路系统计算电路Table 4-1 Short-circuit system calculates circuit变电所母线电源系统的电抗

32、:X= = =0.4中央变电所到配电站的电抗:R1=R0L=60.301=1.806X1=X0L=0.066=0.36采区变电所到1#移动变电站电缆的阻抗值:R2=0.7321=0.732X2=0.061=0.061#移动变电所到2#移动变电站的阻抗值:R3=0.7320.003=0.0022X3=0.070.003=0.00021计算短路电流: kA Id1(2)=1.8580.866=1.61kA Id1(3)=1.8582.55=4.74kA Id2(2)=0.8661.363=1.18kA Id2(3)=1.3632.55=3.47kA Id3(2)=0.8661.36=1.18kAI

33、d3(3)=1.3632.55=3.47kA计算短路容量: Sd1(3)=1.732UeId1(3)=1.7326.31.858=20.27MVA Sd2(3)=1.7326.31.363=14.87MVA Sd3(3)Sd2(3)=14.87MVA表41 短路点的计算Tabal 41 Short-circuit system calculates短路点最大运行方式1.8581.3631.361.611.181.181.962.672.674.743.473.4720.2714.8714.874.2 低压电网短路电流的计算4.2.1 计算短路电流的目的1)为了正确的选择和校验电气设备,满足对短

34、路电流的动稳定性和热稳定性要求,对于低压开关设备和熔断器等,还应按短路电流校验分断能力。2)正确整定计算继电保护装置,是在短路故障发生能够准确可靠的运行。4.2.2短路电流的计算现在以采煤机三相短路为例计算三相短路电流,计算如图42。 图42 短路系统计算电路Table 4-2 Short-circuit system calculates circuit短路回路阻抗计算:因变压器容量较大,有因S 点处于千伏级电网变压比较小,因此高压系统的阻抗不宜忽略。 中央变电所母线的电源系统的电抗:X中央变电所至采区变电所高压电缆的阻抗:采区变电所到1移动变电站高压电缆的阻抗:1移动变电站到2移动变电站高

35、压电缆的阻抗:高压系统总阻抗:2移动变电站变压器的阻抗:低压侧干线电缆的阻抗:X=0.070.08=0.0056采煤机支线电缆的阻抗:X=0.00780.25=0.0175短路回路总阻抗(考虑电弧的电阻=0.01) 计算短路电流:A 折算到1移动变电站二次侧的阻抗: 1移动变电站变压器的阻抗:其他短路点的计算结果如表4-2。根据工矿企业供电P50页,计算冲击电流:对于一般高压电网TS0.05S,此时KIM=1.8,则短路冲击电流为iim=对于一般低压电网,则短路冲击电流为表42短路点的计算Table 4-2 Short-circuit system calculates短路方式及参数短 路 点

36、 名 称SSSSSSSSSSS最小运行方式两相短路电流/A16071188250023071850156319671500193522641758最大运行方式三相短路电流/A18561372288626642030短路容量/MVA20.2514.9764.82.44短路电流冲击值/KA54.73.55.34.93.75 井下电气设备的选择5.1高压开关的选择5.1.1选择原则1)根据煤矿安全规程规定,矿用一般型高压配电箱适用于煤(岩)与瓦斯突出的矿井井底车场主变电所及主要通风巷道中,作为配电开关或控制保护高压电动机及变压器用。 2)根据煤矿安全规程规定,矿用隔爆型高压配电箱适用于有煤(岩)与瓦

37、斯突出的矿井井底车场中央变电所及所有采区变电所中,作为配电开关或控制保护高压电动机及变压器用。 3)在选用高压开关时,除考虑使用场所外,其额定电压必须符合井下高压电网的额定电压等级;额定电流应不小于所控制负荷的长期工作电流。4)在选用高压开关时,其断流容量不得小于变电所母线上的实际短路容量。如果缺少实际数据,则变电所母线短路容量可取S(3)=50MVA5.1.2型号与台数的确定 1)按工作条件选型式: 根据选择原则及工作环境可采用BGP66型矿用隔爆型高压配电箱,其共同的特点是:采用真空断路器,额定短路开断电流有效值可达10KA,有的可达12.5KA,采用电子综合保护装置及压敏电阻,具有漏电、

38、过流、短路、绝缘监视,失压及过电压等保护功能。 高压配电箱电气参数的选择和校验,其技术数据见工矿企业供电: 额定电压选择:根据式(6-1)选择Un=Un.w=6kV,合格 额定电流选择:根据式(6-2)选择以1#综采工作面供电线路的配电箱为例,选择 =200A =96.2A,合格 额定断流容量校验:根据式(6-4)S =100MVA20.25MVA,合格 短路动稳定校验:根据式(3-50) =25kA =4.7kA,合格 短路热稳定校验:根据式(3-57)其tt=102=200=1.8620.2=0.7式中 =0.15+0.05=0.2S所以满足要求。表5-1 短路计算结果Table 5-1 calculation resultUe(kV)(A)分闸时间计算值696.220.254.70.70.2

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 成人教育


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号