全国各地2014年中考数学真题分类解析汇编49运动变化类的压轴题.doc

上传人:牧羊曲112 文档编号:4593637 上传时间:2023-04-29 格式:DOC 页数:49 大小:1.21MB
返回 下载 相关 举报
全国各地2014年中考数学真题分类解析汇编49运动变化类的压轴题.doc_第1页
第1页 / 共49页
全国各地2014年中考数学真题分类解析汇编49运动变化类的压轴题.doc_第2页
第2页 / 共49页
全国各地2014年中考数学真题分类解析汇编49运动变化类的压轴题.doc_第3页
第3页 / 共49页
全国各地2014年中考数学真题分类解析汇编49运动变化类的压轴题.doc_第4页
第4页 / 共49页
全国各地2014年中考数学真题分类解析汇编49运动变化类的压轴题.doc_第5页
第5页 / 共49页
点击查看更多>>
资源描述

《全国各地2014年中考数学真题分类解析汇编49运动变化类的压轴题.doc》由会员分享,可在线阅读,更多相关《全国各地2014年中考数学真题分类解析汇编49运动变化类的压轴题.doc(49页珍藏版)》请在三一办公上搜索。

1、运动变化类的压轴题2014年运动变化类的压轴题,题目展示涉及:单一(双)动点在三角形、四边形上运动;在直线、抛物线上运动;几何图形整体运动问题.知识点涉及:全等三角形的判定与性质;特殊四边形形的判定和性质;圆的相关性质;解直角三角形,勾股定理,相似三角形的性质.数学思想涉及:分类讨论;数形结合;方程思想. 解答这类问题的关键是正确分类画出直观图形.现选取部分省市的2014年中考题展示,以飨读者.一、单动点问题【题1】(2014年江苏徐州第28题)如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过

2、点E作EGEF,EG与圆O相交于点G,连接CG(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;求点G移动路线的长【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质【专题】:压轴题;运动变化型【分析】:(1)只要证到三个内角等于90即可(2)易证点D在O上,根据圆周角定理可得FCE=FDE,从而证到CFEDAB,根据相似三角形的性质可得到S矩形ABCD=2SCFE=然后只需求出CF的

3、范围就可求出S矩形ABCD的范围根据圆周角定理和矩形的性质可证到GDC=FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可【解答】:解:(1)证明:如图1,CE为O的直径,CFE=CGE=90EGEF,FEG=90CFE=CGE=FEG=90四边形EFCG是矩形(2)存在连接OD,如图2,四边形ABCD是矩形,A=ADC=90点O是CE的中点,OD=OC点D在O上FCE=FDE,A=CFE=90,CFEDAB=()2AD=4,AB=3,BD=5,SCFE=()2SDAB=34=S矩形ABCD=2SCFE=四边形EFCG是矩形,FCEGFCE=CEGGD

4、C=CEG,FCE=FDE,GDC=FDEFDE+CDB=90,GDC+CDB=90GDB=90当点E在点A(E)处时,点F在点B(F)处,点G在点D(G处,如图2所示此时,CF=CB=4当点F在点D(F)处时,直径FGBD,如图2所示,此时O与射线BD相切,CF=CD=3当CFBD时,CF最小,此时点F到达F,如图2所示SBCD=BCCD=BDCF43=5CFCF=CF4S矩形ABCD=,()2S矩形ABCD42S矩形ABCD12矩形EFCG的面积最大值为12,最小值为GDC=FDE=定值,点G的起点为D,终点为G,点G的移动路线是线段DGGDC=FDE,DCG=A=90,DCGDAB=DG

5、=点G移动路线的长为【点评】:本题考查了矩形的判定与性质、相似三角形的判定与性质、圆周角定理、直角三角形斜边上的中线等于斜边的一半、垂线段定理等知识,考查了动点的移动的路线长,综合性较强而发现CDG=ADB及FCE=ADB是解决本题的关键【题2】(2014湖州第24题)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PEPF交y轴于点E,设点F运动的时间是t秒(t0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b

6、,试用含a的代数式表示b;(3)作点F关于点M的对称点F,经过M、E和F三点的抛物线的对称轴交x轴于点Q,连接QE在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由【分析】:(1)连接PM,PN,运用PMFPNE证明,(2)分两种情况当t1时,点E在y轴的负半轴上,0t1时,点E在y轴的正半轴或原点上,再根据(1)求解,(3)分两种情况,当1t2时,当t2时,三角形相似时还各有两种情况,根据比例式求出时间t【解答】:证明:(1)如图,连接PM,PN,P与x轴,y轴分别相切于点M和点N,PMMF,

7、PNON且PM=PN,PMF=PNE=90且NPM=90,PEPF,NPE=MPF=90MPE,在PMF和PNE中,PMFPNE(ASA),PE=PF,(2)解:当t1时,点E在y轴的负半轴上,如图,由(1)得PMFPNE,NE=MF=t,PM=PN=1,b=OF=OM+MF=1+t,a=NEON=t1,ba=1+t(t1)=2,b=2+a,0t1时,如图2,点E在y轴的正半轴或原点上,同理可证PMFPNE,b=OF=OM+MF=1+t,a=ONNE=1t,b+a=1+t+1t=2,b=2a,(3)如图3,()当1t2时,F(1+t,0),F和F关于点M对称,F(1t,0)经过M、E和F三点的

8、抛物线的对称轴交x轴于点Q,Q(1t,0)OQ=1t,由(1)得PMFPNE NE=MF=t,OE=t1当OEQMPF=,解得,t=,当OEQMFP时,=,=,解得,t=,()如图4,当t2时,F(1+t,0),F和F关于点M对称,F(1t,0)经过M、E和F三点的抛物线的对称轴交x轴于点Q,Q(1t,0)OQ=t1,由(1)得PMFPNE NE=MF=t,OE=t1当OEQMPF=,无解,当OEQMFP时,=,=,解得,t=2,所以当t=,t=,t=2时,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似【点评】:本题主要考查了圆的综合题,解题的关键是把圆的知识与全等三角形与

9、相似三角形相结合找出线段关系【题3】 (2014年四川省绵阳市第24题)如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE(1)求证:DECEDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作AEC的内接矩形,使其定点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值【考点】:四边形综合题【分析】:(1)由矩形的性质可知ADCCEA,得出AD=CE,DC=EA,ACD=CAE,从而求得DECEDA;(2)根据勾股定理即可求得(3)有矩形PQMN的性质得PQCA

10、,所以,从而求得PQ,由PNEG,得出=,求得PN,然后根据矩形的面积公式求得解析式,即可求得【解答】:(1)证明:由矩形的性质可知ADCCEA,AD=CE,DC=EA,ACD=CAE,在ADE与CED中DECEDA(SSS);(2)解:如图1,ACD=CAE,AF=CF,设DF=x,则AF=CF=4x,在RTADF中,AD2+DF2=AF2,即32+x2=(4x)2,解得;x=,即DF=(3)解:如图2,由矩形PQMN的性质得PQCA又CE=3,AC=5设PE=x(0x3),则,即PQ=过E作EGAC 于G,则PNEG,=又在RtAEC中,EGAC=AECE,解得EG=,即PN=(3x)设矩

11、形PQMN的面积为S则S=PQPN=x2+4x=+3(0x3)所以当x=,即PE=时,矩形PQMN的面积最大,最大面积为3【点评】:本题考查了全等三角形的判定和性质,勾股定理的应用,平行线分线段成比例定理【题4】(2014年浙江绍兴第25题)如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足APQ=90,PQ交x轴于点C(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP

12、与y轴的交点,若ACE=AEC,PD=2OD,求PA:PC的值【考点】:相似形综合题;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质;勾股定理;矩形的判定与性质;平行线分线段成比例;相似三角形的判定与性质【专题】:压轴题【分析】:(1)易得点P的坐标是(2,1),即可得到PA的长(2)易证AOB=45,由角平分线的性质可得PA=PC,然后通过证明ANPCMP即可求出PA:PC的值(3)可分点P在线段OB的延长线上及其反向延长线上两种情况进行讨论易证PA:PC=PN:PM,设OA=x,只需用含x的代数式表示出PN、PM的长,即可求出PA:PC的值【解答】:解:(1)点P与点B重合

13、,点B的坐标是(2,1),点P的坐标是(2,1)PA的长为2(2)过点P作PMx轴,垂足为M,过点P作PNy轴,垂足为N,如图1所示点A的纵坐标与点B的横坐标相等,OA=ABOAB=90,AOB=ABO=45AOC=90,POC=45PMx轴,PNy轴,PM=PN,ANP=CMP=90NPM=90APC=90APN=90APM=CPM在ANP和CMP中,APN=CPM,PN=PM,ANP=CMP,ANPCMPPA=PCPA:PC的值为1:1(3)若点P在线段OB的延长线上,过点P作PMx轴,垂足为M,过点P作PNy轴,垂足为N,PM与直线AC的交点为F,如图2所示APN=CPM,ANP=CMP

14、,ANPCMP ACE=AEC,AC=AEAPPC,EP=CPPMy轴,AF=CF,OM=CMFM=OA设OA=x,PFOA,PDFODAPD=2OD,PF=2OA=2x,FM=xPM=xAPC=90,AF=CF,AC=2PF=4xAOC=90,OC=xPNO=NOM=OMP=90,四边形PMON是矩形PN=OM=xPA:PC=PN:PM=x:x=若点P在线段OB的反向延长线上,过点P作PMx轴,垂足为M,过点P作PNy轴,垂足为N,PM与直线AC的交点为F,如图3所示同理可得:PM=x,CA=2PF=4x,OC=xPN=OM=OC=xPA:PC=PN:PM=x:x=综上所述:PA:PC的值为

15、或【点评】:本题考查了角平分线的性质、全等三角形的判定与性质、相似三角形的判定与性质、矩形的判定与性质、等腰三角形的判定与性质、平行线等分线段定理、勾股定理等知识,综合性非常强 【题5】(2014无锡第28题)如图1,已知点A(2,0),B(0,4),AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N设P运动的时间为t(0t2)秒(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);(2)设MNC与OAB重叠部分的面积为S试求S关于t的函数关系式;在图2的直角坐标系

16、中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由【考点】:相似形综合题【分析】:(1)如答图1,作辅助线,由比例式求出点D的坐标;(2)所求函数关系式为分段函数,需要分类讨论答图21,答图22表示出运动过程中重叠部分(阴影)的变化,分别求解;画出函数图象,由两段抛物线构成观察图象,可知当t=1时,S有最大值【解答】:解:(1)如答图1,过点C作CFx轴于点F,CEy轴于点E,由题意,易知四边形OECF为正方形,设正方形边长为xCEx轴,即,解得x=C点坐标为(,);PQAB,即,OP=2OQP(0,2t),Q(t,0)对称轴OC为第一象限的角平分线,

17、对称点坐标为:M(2t,0),N(0,t)(2)当0t1时,如答图21所示,点M在线段OA上,重叠部分面积为SCMNSCMN=S四边形CMONSOMN=(SCOM+SCON)SOMN=(2t+t)2tt=t2+2t;当1t2时,如答图22所示,点M在OA的延长线上,设MN与AB交于点D,则重叠部分面积为SCDN设直线MN的解析式为y=kx+b,将M(2t,0)、N(0,t)代入得,解得,y=x+t;同理求得直线AB的解析式为:y=2x+4联立y=x+t与y=2x+4,求得点D的横坐标为SCDN=SBDNSBCN=(4t)(4t)=t22t+综上所述,S=画出函数图象,如答图23所示:观察图象,

18、可知当t=1时,S有最大值,最大值为1【点评】:本题是运动型综合题,涉及二次函数与一次函数、待定系数法、相似、图形面积计算、动点问题函数图象等知识点难点在于第(2)问,正确地进行分类讨论,是解决本题的关键【题6】(2014杭州第22题)菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=4,动点P在线段BD上从点B向点D运动,PFAB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,BP=x(1)用含x的代数式分别表示S1,S2;(2)若S1=S2,求x的值【考点】:四边形综合题;菱形

19、的性质;轴对称的性质;轴对称图形;特殊角的三角函数值【专题】:综合题;动点型;分类讨论【分析】:(1)根据对称性确定E、F、G、H都在菱形的边上,由于点P在BO上与点P在OD上求S1和S2的方法不同,因此需分情况讨论(2)由S1=S2和S1+S2=8可以求出S1=S2=4然后在两种情况下分别建立关于x的方程,解方程,结合不同情况下x的范围确定x的值【解答】:解:(1)当点P在BO上时,如图1所示四边形ABCD是菱形,AC=4,BD=4,ACBD,BO=BD=2,AO=AC=2,且S菱形ABCD=BDAC=8tanABO=ABO=60在RtBFP中,BFP=90,FBP=60,BP=x,sinF

20、BP=sin60=FP=xBF=四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,SBFP=SBGP=SDEQ=SDHQS1=4SBFP=4x=S2=8当点P在OD上时,如图2所示AB=4,BF=,AF=ABBF=4在RtAFM中,AFM=90,FAM=30,AF=4tanFAM=tan30=FM=(4)SAFM=AFFM=(4)(4)=(4)2四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,SAFM=SAEM=SCHN=SCGNS2=4SAFM=4(4)2=(x8)2S1=8S2=8(x8)2综上所述:当点P在BO上时,S1=,S2=8;当点P在

21、OD上时,S1=8(x8)2,S2=(x8)2(2)当点P在BO上时,0x2S1=S2,S1+S2=8,S1=4S1=4解得:x1=2,x2=222,20,当点P在BO上时,S1=S2的情况不存在当点P在OD上时,2x4S1=S2,S1+S2=8,S2=4S2=(x8)2=4解得:x1=8+2,x2=828+24,2824,x=82综上所述:若S1=S2,则x的值为82【点评】:本题考查了以菱形为背景的轴对称及轴对称图形的相关知识,考查了菱形的性质、特殊角的三角函数值等知识,还考查了分类讨论的思想【题7】(2014.福州第21题)如图1,点O在线段AB上,AO=2,OB=1, OC为射线,且B

22、OC=60. 动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动. 设运动时间为t秒.(1)当时,则OP= , ;(2)当ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQBP,并使得QOP=B,求证:.【考点】:1.单动点问题;2. 锐角三角函数定义;3.特殊角的三角函数值;4.相似三角形的判定和性质;5.分类思想的应用.【答案】(1)1,;(2)1秒或秒;(3)证明见解析【解析】 (3)AP=AB,APB=B.【题8】(2014成都第28题)如图,已知抛物线y=(x+2)(x4)(k为常数,且k0)与x轴从左至右依次交于A,B两点,与x轴交于点C,经过点

23、B的直线y=x+b与抛物线的另一交点为D(1)若点D的横坐标为5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?【考点】:二次函数综合题【分析】:(1)首先求出点A、B坐标,然后求出直线BD的解析式,求得点D坐标,代入抛物线解析式,求得k的值;(2)因为点P在第一象限内的抛物线上,所以ABP为钝角因此若

24、两个三角形相似,只可能是ABCAPB或ABCABP如答图2,按照以上两种情况进行分类讨论,分别计算;(3)由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF如答图3,作辅助线,将AF+DF转化为AF+FG;再由垂线段最短,得到垂线段AH与直线BD的交点,即为所求的F点【解答】:解:(1)抛物线y=(x+2)(x4),令y=0,解得x=2或x=4,A(2,0),B(4,0)直线y=x+b经过点B(4,0),4+b=0,解得b=,直线BD解析式为:y=x+当x=5时,y=3,D(5,3)点D(5,3)在抛物线y=(x+2)(x4)上,(5+2)(54)=3,k=(2)由抛物线解析式

25、,令x=0,得y=k,C(0,k),OC=k因为点P在第一象限内的抛物线上,所以ABP为钝角因此若两个三角形相似,只可能是ABCAPB或ABCABP若ABCAPB,则有BAC=PAB,如答图21所示设P(x,y),过点P作PNx轴于点N,则ON=x,PN=ytanBAC=tanPAB,即:,y=x+kD(x,x+k),代入抛物线解析式y=(x+2)(x4),得(x+2)(x4)=x+k,整理得:x26x16=0,解得:x=8或x=2(与点A重合,舍去),P(8,5k)ABCAPB,即,解得:k=若ABCABP,则有ABC=PAB,如答图22所示与同理,可求得:k=综上所述,k=或k=(3)由(

26、1)知:D(5,3),如答图22,过点D作DNx轴于点N,则DN=3,ON=5,BN=4+5=9,tanDBA=,DBA=30过点D作DKx轴,则KDF=DBA=30过点F作FGDK于点G,则FG=DF由题意,动点M运动的路径为折线AF+DF,运动时间:t=AF+DF,t=AF+FG,即运动时间等于折线AF+FG的长度由垂线段最短可知,折线AF+FG的长度的最小值为DK与x轴之间的垂线段过点A作AHDK于点H,则t最小=AH,AH与直线BD的交点,即为所求之F点A点横坐标为2,直线BD解析式为:y=x+,y=(2)+=2,F(2,2)综上所述,当点F坐标为(2,2)时,点M在整个运动过程中用时

27、最少【点评】:本题是二次函数压轴题,难度很大第(2)问中需要分类讨论,避免漏解;在计算过程中,解析式中含有未知数k,增加了计算的难度,注意解题过程中的技巧;第(3)问中,运用了转化思想使得试题难度大大降低,需要认真体会【题9】(2014黄冈第25题)已知:如图,在四边形OABC中,ABOC,BCx轴于点C,A(1,1),B(3,1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0t2),OPQ与四边形OABC重叠部分的面积为S(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P

28、、点Q的坐标;(3)如果将OPQ绕着点P按逆时针方向旋转90,是否存在t,使得OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式【考点】:二次函数综合题【专题】:压轴题【分析】:(1)设抛物线解析式为y=ax2+bx(a0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出AOC=45,然后判断出POQ是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入

29、抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分0t1时,重叠部分的面积等于POQ的面积,1t1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,1.5t2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解【解答】:解:(1)设抛物线解析式为y=ax2+bx(a0),把点A(1,1),B(3,1)代入得,解得,抛物线解析式为y=x2x,y=x2x=(x2)2,顶点M的坐标为(2,);(2)点P从点O出发速度是每秒2个单位长度,OP=2t,点P的坐标为(2t,0),A(1,1),AOC=45

30、,点Q到x轴、y轴的距离都是OP=2t=t,点Q的坐标为(t,t);(3)OPQ绕着点P按逆时针方向旋转90,旋转后点O、Q的对应点的坐标分别为(2t,2t),(3t,t),若顶点O在抛物线上,则(2t)2(2t)=2t,解得t=,若顶点Q在抛物线上,则(3t)2(3t)=t,解得t=1,综上所述,存在t=或1,使得OPQ的顶点O或顶点Q在抛物线上;(4)点Q与点A重合时,OP=12=2,t=22=1,点P与点C重合时,OP=3,t=32=1.5,t=2时,OP=22=4,PC=43=1,此时PQ经过点B,所以,分三种情况讨论:0t1时,S=(2t)=t2,1t1.5时,S=(2t)(t)2=

31、2t1;1.5t2时,S=(2+3)11(2t3)2=2(t2)2+;所以,S与t的关系式为S=【点评】:本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,等腰直角三角形的性质,二次函数图象上点的坐标特征,三角形的面积,难点在于(4)随着运动时间的变化,根据重叠部分的形状的不同分情况讨论,作出图形更形象直观二、双动点问题【题1】(2014年山东烟台第25题)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动(1)如图,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图,当E,F分别

32、移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图若AD=2,试求出线段CP的最小值【分析】:(1)AE=DF,AEDF先证得ADEDCF由全等三角形的性质得AE=DF,DAE=CDF,再由等角的余角相等可得AEDF;(2)是四边形ABCD是正方形,所以AD=DC,ADE=DCF=90,DE

33、=CF,所以ADEDCF,于是AE=DF,DAE=CDF,因为CDF+ADF=90,DAE+ADF=90,所以AEDF;(3)成立由(1)同理可证AE=DF,DAE=CDF,延长FD交AE于点G,再由等角的余角相等可得AEDF;(4)由于点P在运动中保持APD=90,所以点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,再由勾股定理可得OC的长,再求CP即可【解答】解:(1)AE=DF,AEDF理由:四边形ABCD是正方形,AD=DC,ADC=C=90DE=CF,ADEDCFAE=DF,DAE=CDF,由于CDF+ADF=90,DAE+ADF=90AE

34、DF;(2)是;(3)成立理由:由(1)同理可证AE=DF,DAE=CDF延长FD交AE于点G,则CDF+ADG=90,ADG+DAE=90AEDF;(4)如图:由于点P在运动中保持APD=90,点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在RtODC中,OC=,CP=OCOP=【点评】:本题主要考查了四边形的综合知识综合性较强,特别是第(4)题要认真分析 【题2】(2014温州第24题)如图,在平面直角坐标系中,点A,B的坐标分别为(3,0),(0,6)动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以

35、每秒2个单位的速度运动,以CP,CO为邻边构造PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒(1)当点C运动到线段OB的中点时,求t的值及点E的坐标(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形(3)在线段PE上取点F,使PF=1,过点F作MNPE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中PCOD的面积为S当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围【考点】:四边形综合题【分析】:(1)由C是OB的中点求出时间,再求

36、出点E的坐标,(2)连接CD交OP于点G,由PCOD的对角线相等,求四边形ADEC是平行四边形(3)当点C在BO上时,第一种情况,当点M在CE边上时,由EMFECO求解,第二种情况,当点N在DE边上时,由EFNEPD求解,当点C在BO的延长线上时,第一种情况,当点M在DE边上时,由EMFEDP求解,第二种情况,当点N在CE边上时,由EFNEOC求解,当1t时和当t5时,分别求出S的取值范围,【解答】:解:(1)OB=6,C是OB的中点,BC=OB=3,2t=3即t=,OE=+3=,E(,0)(2)如图,连接CD交OP于点G,在PCOD中,CG=DG,OG=PG,AO=PO,AG=EG,四边形A

37、DEC是平行四边形(3)()当点C在BO上时,第一种情况:如图,当点M在CE边上时,MFOC,EMFECO,=,即=,t=1,第二种情况:当点N在DE边NFPD,EFNEPD,=,t=,()当点C在BO的延长线上时,第一种情况:当点M在DE边上时,MFPD,EMFEDP,= 即 =,t=,第二种情况:当点N在CE边上时,NFOC,EFNEOC,=即 =,t=5S或S20当1t时,S=t(62t)=2(t)2+,t=在1t范围内,S,当t5时,S=t(2t6)=2(t)2,S20【点评】:本题主要是考查了四边形的综合题,解题的关键是正确分几种不同种情况求解【题3】 (2014年湖北随州第25题)

38、平面直角坐标系中,四边形ABCD是菱形,点C的坐标为(3,4),点A在x轴的正半轴上,O为坐标原点,连接OB,抛物线y=ax2+bx+c经过C、O、A三点(1)直接写出这条抛物线的解析式;(2)如图1,对于所求抛物线对称轴上的一点E,设EBO的面积为S1,菱形ABCD的面积为S2,当S1S2时,求点E的纵坐标n的取值范围;(3)如图2,D(0,)为y轴上一点,连接AD,动点P从点O出发,以个单位/秒的速度沿OB方向运动,1秒后,动点Q从O出发,以2个单位/秒的速度沿折线OAB方向运动,设点P运动时间为t秒(0t6),是否存在实数t,使得以P、Q、B为顶点的三角形与ADO相似?若存在,求出相应的

39、t值;若不存在,请说明理由【考点】:二次函数综合题【分析】:(1)求得菱形的边长,则A的坐标可以求得,然后利用待定系数法即可求得函数的解析式;(2)首先求得菱形的面积,即可求得S1的范围,当S1取得最大值时即可求得直线的解析式,则n的值的范围即可求得;(3)分当1t3.5时和3.5t6时两种情况进行讨论,依据相似三角形的对应边的比相等,即可列方程求解【解答】:解:(1)根据题意得:,解得:,则抛物线的解析式是:y=x2x;(2)设BC与y轴相交于点G,则S2=OGBC=20,S15,又OB所在直线的解析式是y=2x,OB=2,当S1=5时,EBO的OB边上的高是如图1,设平行于OB的直线为y=

40、2x+b,则它与y轴的交点为M(0,b),与抛物线对称轴x=交于点E(,n)过点O作ONME,点N为垂足,若ON=,由MNOOGB,得OM=5,y=2x5,由,解得:y=0,即E的坐标是(,0)与OB平行且到OB的距离是的直线有两条由对称性可得另一条直线的解析式是:y=2x+5则E的坐标是(,10)由题意得得,n的取值范围是:0n10且n5(3)如图2,动点P、Q按题意运动时,当1t3.5时,OP=t,BP=2t,OQ=2(t1),连接QP,当QPOP时,有=,PQ=(t1),若=,则有=,又QPB=DOA=90,BPQAOD,此时,PB=2PQ,即2t=(t1),10t=8(t1),t=2;

41、当3.5t6时,QB=102(t1)=122t,连接QP若QPBP,则有PBQ=ODA,又QPB=AOD=90,BPQDOA,此时,PB=PB,即122t=(2t),122t=10t,t=2(不合题意,舍去)若QPBQ,则BPQDAO,此时,PB=BQ,即2t=(122t),2t=122t,解得:t=则t的值为2或【点评】:本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法在求有关动点问题时要注意分析题意分情况讨论结果【题4】(2014武汉第24题)如图,RtABC中,ACB=90,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0t2),连接PQ(1)若BPQ与ABC相似,求t的值;(2)连接AQ,CP,若

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号