《一元二次不等式 (2).doc》由会员分享,可在线阅读,更多相关《一元二次不等式 (2).doc(6页珍藏版)》请在三一办公上搜索。
1、【课题】2.3 一元二次不等式刘文军 2013届电子商务班【教学目标】知识目标: 了解方程、不等式、函数的图像之间的联系; 掌握一元二次不等式的图像解法能力目标: 通过对方程、不等式、函数的图像之间的联系的研究,培养学生的观察能力与数学思维能力; 通过求解一元二次不等式,培养学生的计算技能【教学重点】 方程、不等式、函数的图像之间的联系; 一元二次不等式的解法【教学难点】一元二次不等式的解法 【教学设计】 从复习一次函数图像、一元一次方程、一元一次不等式的联系入手; 类比观察一元二次函数图像,得到一元二次不等式的图像解法; 加强知识的巩固与练习,培养学生的数学思维能力; 讨论、交流、总结,培养
2、团队精神,提升认知水平【教学备品】教学课件【课时安排】2课时(90分钟)【教学过程】教 学 过 程教师行为学生行为教学意图时间*揭示课题 2.3 一元二次不等式*回顾思考 复习导入问题 一次函数的图像、一元一次方程与一元一次不等式之间存在着哪些联系?解决 观察函数的图像:方程的解恰好是函数图像与x轴交点的横坐标;在x轴上方的函数图像所对应的自变量x的取值范围,恰好是不等式的解集;在x轴下方的函数图像所对应的自变量x的取值范围,恰好是不等式的解集归纳 一般地,如果方程的解是,那么函数图像与x轴的交点坐标为,并且(1)不等式的解集是函数的图像在x轴上方部分所对应的自变量x的取值范围,即;(2)不等
3、式的解集是函数在x轴下方部分所对应的自变量x的取值范围,即总结 由此看到,通过对函数的图像的研究,可以求出不等式与的解集介绍提出问题引领分析讲解提炼了解思考观察领悟理解认知复习相关知识内容强化知识点的内在联系突出数形结合15*动脑思考 明确新知概念含有一个未知数,并且未知数的最高次数为二次的不等式,叫做一元二次不等式一般形式或 讲解强调理解记忆明确定义20*动手探索 感受新知思考 二次函数的图像、一元二次方程与一元二次不等式之间存在着哪些联系?问题已知二次函数y=x2-x-6,问:1.怎样画这个二次函数的草图?2.根据二次函数的图像,能求出抛物线y=x2-x-6与x轴的交点吗?其交点将x轴分成
4、几段?3.观察抛物线找出纵坐标y=0、y0、y0、y0的那些点所对应的横坐标x的取值范围? 解决解方程得观察图像可以看到,方程的解,恰好分别为函数图像与x轴交点的横坐标;在x轴上方的函数图像,所对应的自变量x的取值范围,即内的值,使得;在x轴下方的函数图像所对应的自变量x的取值范围,即内的值,使得质疑说明引领分析讲解思考观察理解领会通过实例介绍使学生感受一元二次不等式的图像解法30*动脑思考 探索新知解法利用一元二次函数的图像可以解不等式或 (1)当时,方程有两个不相等的实数解和,一元二次函数的图像与轴有两个交点, (如图(1)所示)此时,不等式的解集是,不等式的解集是;(2)当时,方程有两个
5、相等的实数解,一元二次函数的图像与轴只有一个交点(如图(2)所示)此时,不等式的解集是;不等式的解集是(3)当时,方程没有实数解,一元二次函数的图像与轴没有交点(如图(3)所示)此时,不等式的解集是;不等式的解集是归纳总结讲解分析强调讲解思考观察理解领会记忆引导学生经历由特殊到一般的提炼过程强化图像作用熟练数形结合应用40*理论升华 整体建构当时,一元二次不等式的解集如下表所示:方程或不等式解集表中引领归纳强化领会总结记忆综合归纳便于学生理解记忆50*巩固知识 典型例题例1解下列各一元二次不等式:(1); (2);(3);(4)分析 首先判定二次项系数是否为正数,再研究对应一元二次方程解的情况
6、,最后对照表格写出不等式的解集解(1)因为二次项系数为,且方程的解集为,故不等式的解集为(2)可化为,因为二次项系数为,且方程的解集为,故的解集为(3)中,二次项系数为,将不等式两边同乘,得由于方程的解集为故不等式的解集为,即的解集为(4)因为二次项系数为,将不等式两边同乘,得由于判别式,故方程没有实数解所以不等式的解集为,即的解集为例2是什么实数时,有意义解根据题意需要解不等式 解方程得由于二次项系数为,所以不等式的解集为即当时,有意义质疑分析思路讲解强调变化引领讲解分析思路观察思考理解主动求解领会理解主动求解强化一元二次不等式的解题思路变化情况重点突出调动学生应用意识75*运用知识 强化练习 教材练习2.3解下列各一元二次不等式:(1);(2)巡视指导求解交流反馈学习效果80*归纳小结 强化思想本次课学了哪些内容?重点和难点各是什么?*自我反思 目标检测 本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何?引导总结反思交流培养学生总结学习过程能力85*继续探索 活动探究(1)读书部分: 教材章节2.3,学习与训练2.3;(2)书面作业: 教材习题2.3,学习与训练2.3训练题说明记录90第 6 页