最新5.1三角形内角和定理第1课时教学设计 汇编.doc

上传人:sccc 文档编号:4623820 上传时间:2023-05-02 格式:DOC 页数:5 大小:76KB
返回 下载 相关 举报
最新5.1三角形内角和定理第1课时教学设计 汇编.doc_第1页
第1页 / 共5页
最新5.1三角形内角和定理第1课时教学设计 汇编.doc_第2页
第2页 / 共5页
最新5.1三角形内角和定理第1课时教学设计 汇编.doc_第3页
第3页 / 共5页
最新5.1三角形内角和定理第1课时教学设计 汇编.doc_第4页
第4页 / 共5页
最新5.1三角形内角和定理第1课时教学设计 汇编.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

《最新5.1三角形内角和定理第1课时教学设计 汇编.doc》由会员分享,可在线阅读,更多相关《最新5.1三角形内角和定理第1课时教学设计 汇编.doc(5页珍藏版)》请在三一办公上搜索。

1、第七章 平行线的证明5三角形内角和定理(第1课时)一、学生知识状况分析 学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。 活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验二、教学任务分析 上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排

2、三角形内角和定理的证明旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。为此,本节课的教学目标是: 1.掌握三角形内角和定理的证明及简单应用。 2.灵活运用三角形内角和定理解决相关问题。 3.用多种方法证明三角形定理,培养一题多解的能力。 4.对比过去撕纸等探索过程,体会思维实验和符号化的理性作用三、 教学过程分析 本节课的设计分为四个环节: 情境引入探索新知反馈练习课堂小结第一环节:情境引入活动内容:(1)用折纸的方法验证三角形内角和定理 实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图638(1)然后把另外两角相向对折,使其顶点与已折角的顶

3、点相嵌合(图(2)、(3),最后得图(4)所示的结果(1) (2) (3) (4)试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。 试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?活动目的: 对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明教学效果: 说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。第二环节:探索新知活动内容: 用严谨的证明来论证三角形内

4、角和定理ABCED 看哪个同学想的方法最多?ABCDE方法一:过A点作DEBC DEBCDAB=B,EAC=C(两直线平行,内错角相等)DAB+BAC+EAC=180BAC+B+C=180(等量代换)方法二:作BC的延长线CD,过点C作射线CEBA CEBAB=ECD(两直线平行,同位角相等)A=ACE(两直线平行,内错角相等)BCA+ACE+ECD=180A+B+ACB=180(等量代换)活动目的: 用平行线的判定定理及性质定理来推导出新的定理,让学生再次体会几何证明的严密性和数学的严谨,培养学生的逻辑推理能力。教学效果: 添辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定

5、理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的第三环节:反馈练习活动内容: (1)ABC中可以有3个锐角吗? 3个直角呢? 2个直角呢?若有1个直角另外两角有什么特点?(2)ABC中,C=90,A=30,B=?(3)A=50,B=C,则ABC中B=?(4)三角形的三个内角中,只能有_个直角或_个钝角(5)任何一个三角形中,至少有_个锐角;至多有_个锐角讨论题:(6)三角形中三角之比为123,则三个角各为多少度?A600万元(7)已知:ABC中,C=B=2A。(a)求B的度数;(b)若BD是AC边上的高,求DBC的度数?活动目的: 通过学生的反馈练习,使教师能

6、全面了解学生对三角形内角和定理的概念是否清楚,能否灵活运用三角形内角和定理,以便教师能及时地进行查缺补漏参考答案教学效果: 学生对于三角形内角和定理的掌握是非常熟练,因此,学生能较好地解决与三角形内角和定理相关的问题。1、管理信息系统第四环节:课堂小结2甲公司203年度实现账面净利润15 000万元,其203年度财务报表于204年2月28日对外报出。该公司204年度发生的有关交易或事项以及相关的会计处理如下:活动内容: 以前年度损益调整营业外支出 300证明三角形内角和定理有哪几种方法? 辅助线的作法技巧. 购买丙公司股权的成本=10002.5=2500(万元)三角形内角和定理的简单应用.X=

7、800 Y=0活动目的: 复习巩固本课知识,提高学生的掌握程度教学效果:A0 学生对于三角形内角和定理的几种不同的证明方法的理解比较深刻,并能熟练运用三角形内角和定理进行相关证明.四、教学反思三角形的有关知识是“空间与图形”中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础.而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:(1)(2) 甲公司的会计处理不正确。固定资产折旧年限的改变,属于会计估计变更,应自变更日日开始在未来期适用,不应调整已计提的折旧。通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。(3) 充分展示学生的个性,体现“学生是学习的主人”这一主题。(4) 添加辅助线是教学中的一个难点,如何添加辅助线则应允许学生展开思考并争论,展示学生的思维过程,然后在老师的引导下达成共识。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 教育教学 > 成人教育


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号