有理数的加法(1).doc

上传人:小飞机 文档编号:4661853 上传时间:2023-05-05 格式:DOC 页数:4 大小:610KB
返回 下载 相关 举报
有理数的加法(1).doc_第1页
第1页 / 共4页
有理数的加法(1).doc_第2页
第2页 / 共4页
有理数的加法(1).doc_第3页
第3页 / 共4页
有理数的加法(1).doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

《有理数的加法(1).doc》由会员分享,可在线阅读,更多相关《有理数的加法(1).doc(4页珍藏版)》请在三一办公上搜索。

1、七年级数学师生共用讲学稿(N0.7)年级:七年级 执笔:陈桥 内容:有理数的加法(1) 课型:新授 时间: 学习目标:1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算.2、经历探究有理数有理数加法法则过程,学会与他人交流合作.3、会利用有理数加法运算解决简单的实际问题.学习重点:和的符号的确定学习难点:异号两数想加教学方法:引导、探究、归纳与练习相结合教学过程一、学前准备1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进

2、1个球,失1个球.于是红队的净胜球数为 4(2),蓝队的净胜球数为 1(1)。这里用到正数和负数的加法。那么,怎样计算4(2)呢2、一艘潜艇在水下20米,过了一段时间又下潜了15米,现在潜艇在水下 米,你是怎么知道的?能用一个算式表示吗? .又该怎样计算呢?下面我们一起借助数轴来讨论有理数的加法。二、探究新知下面的问题请同学们认真思考完成,再与同伴交流交流.1、问题:1)一支球队在某场比赛中,上半场进了两个球,下半场进了3了个球,那么它的净胜球是 个,列出的算式应该是 2)、若这支球队在某场比赛中,上半场失了两个球,下半场又失了3个球,那么它的净胜球是 个,列出的算式应该是 3)、若这支球队在

3、某场比赛中,上半场进了两个球,下半场又失了3个球,那么它的净胜球是 个,列出的算式应该是 4)、若这支球队在某场比赛中,上半场没有进球也没有失球,下半场失了3个球,那么它的净胜球是 个,列出的算式应该是 2、师生归纳两个有理数相加的几种情况.3、借助数轴来讨论有理数的加法1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了 米,这个问题用算式表示就是: 2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走多少米?很明显,两次共向西走了 米.这个问题用算式表示就是: 如图所示: (3页)3)如果向西走2米,再向东走4米, 那么两次运动后,

4、这个人从起点向东走了 米,写成算式就是 这个问题用数轴表示如下图所示:4)利用数轴,求以下情况时这个人两次运动的结果:先向东走3米,再向西走5米,这个人从起点向( )走了( )米;先向东走5米,再向西走5米,这个人从起点向( )走了( )米;先向西走5米,再向东走5米,这个人从起点向( )走了( )米。写出这三种情况运动结果的算式 5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了 米。写成算式就是 你能从以上几个算式中发现有理数加法的运算法则吗?有理数加法法则(1)、同号的两数相加,取 的符号,并把 相加.(2)绝对值不相等的异号两数相加,取 的

5、加数的符号,并用较大的绝对值 较小的绝对值. 互为相反数的两个数相加得 .注意法则的应用,尤其是和的符号的确定!(3)、一个数同0相加,仍得 。三、 应用探究 例1 计算(能完成吗,先自己动动手吧!) (3)(9); (2)(47)39.例2 足球循环赛中,红队胜黄队4: 1,黄队胜蓝队1 :0,蓝队胜红队1: 0,计算各队的净胜球数。解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数。三场比赛中,红队共进4球,失2球,净胜球数为 (+4)+(2)=+(42)=2;黄队共进2球,失4球,净胜球数为(+2)+(4)= (42)= ( );蓝队共进( )球,失( )球,净胜

6、球数为( )=( )。3、课堂练习1填空: 练习2. P18第1、2题(1)(3)+(5)= ; (2)3(5)= ;(3)5+(3)= ; (4)7(7)= ;(5)8(1)= ; (6)(8)1 = ;(7)(6)+0 = ; (8)0+(2) = ;四、谈谈你这堂课的收获,自己作个总结五、作业 P231、P2612、13 4页2计算:(1)(13)+(18); (2)20(14);(3)1.7 + 2.8 ; (4)2.3 + (3.1);(5)()+(); (6)1+(1.5);(7)(3.04)+ 6 ; (8)+().3判断题:(1)两个负数的和一定是负数;(2)绝对值相等的两个数

7、的和等于零;(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数.4当a = 1.6,b = 2.4时,求a+b和a+(b)的值.5已知a= 8,b= 2. (1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值.1、 计算:(1)15(22) (2)(13)(8) (3)(0.9)1.51 (4)2、计算:(1)23(17)6(22) (2)(2)31(3)2(4)3、计算:(1) (2)4、计算:(1) (2)拓展提高1、 (1)绝对值小于4的所有整数的和是_;(2)绝对值大于2且小于5的所有负整数的和是_。2、 若,则_。3、 已知且abc,求abc的值。4、 若1a3,求的值。5、 计算:6、 计算:(1)(2)(3)(4)(99)(100)7、 10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:0.5,0.3,0,0.2,0.3,1.1,0.7,0.2,0.6,0.7.10袋大米共超重或不足多少千克?总重量是多少千克?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号