《练习2014中考压轴题专项突破练习.doc》由会员分享,可在线阅读,更多相关《练习2014中考压轴题专项突破练习.doc(6页珍藏版)》请在三一办公上搜索。
1、2014中考压轴题专项集训及突破(7) 姓名 1.如图,已知抛物线的方程C1: (m0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧(1) 若抛物线C1过点M(2, 2),求实数m的值;(2) 在(1)的条件下,求BCE的面积;(3) 在(1)的条件下,在抛物线的对称轴上找一点H,使得BHEH最小,求出点H的坐标;2.如图,抛物线 y=ax2+bx+c(a0)经过点A(3,0)、B(1,0)、C(2,1),交y轴于点M.(1) 求抛物线的表达式;(2) D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上
2、是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与MAO相似?若存在,求点P的坐标;若不存在,请说明理由.3. 如图,抛物线yax2bxc经过A(1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴(1) 求抛物线的函数关系式;(2) 设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由w w .x k b 1.c o m4. 如图1,已知抛物线yx2bxc经过A(0, 1)、B(4, 3)两点 (1) 求抛物线的解析式;(2) 求
3、tanABO的值;(3)过点B作BCx轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标5. 如图,在平面直角坐标系中,已知点A(2,4),OB2,抛物线yax2bxc经过点A、O、B三点(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AMOM的最小值;w w w .x k b 1.c o m(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形若存在,求点P的坐标;若不存在,请说明理由6. 已知抛物线的对称轴为直线,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,-3).(1)求抛物线的解析式;(2)若点P在抛物线上运动(点P异于点A),如图1,当PBC的面积与ABC的面积相等时,求点P的坐标;如图2,当PCB =BCA时,求直线CP的解析式