《等比数列(1)教案.doc》由会员分享,可在线阅读,更多相关《等比数列(1)教案.doc(3页珍藏版)》请在三一办公上搜索。
1、课时教案备课人魏品强授课时间课题2.4等比数列(1)课标要求掌握等比数列的定义;理解等比数列的通项公式及推导;教学目标知识目标掌握等比数列的定义;技能目标理解等比数列的通项公式及推导情感态度价值观充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的.重点等比数列的定义及通项公式难点灵活应用定义式及通项公式解决相关问题教学过程及方法问题与情境及教师活动学生活动.课题导入复习:等差数列的定义: =d ,(n2,nN)等差数列是一类特殊的数列,在现实生活中,除了等差数列,我们还会遇到下面一类特殊的数列。课本P41页的4个例子:1,2,4,8,16,1,1,20,观察:请同学
2、们仔细观察一下,看看以上、四个数列有什么共同特征?共同特点:从第二项起,第一项与前一项的比都等于同一个常数。.讲授新课1等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q0),即:=q(q0)1“从第二项起”与“前一项”之比为常数(q) 成等比数列=q(,q0)学生回答1教学过程及方法问题与情境及教师活动学生活动 2 隐含:任一项“0”是数列成等比数列的必要非充分条件3 q= 1时,an为常数。2.等比数列的通项公式1: 由等比数列的定义,有:; 3.等比数列的通项公式2: 4既是等差
3、又是等比数列的数列:非零常数列探究:课本P56页的探究活动等比数列与指数函数的关系等比数列与指数函数的关系:等比数列的通项公式,它的图象是分布在曲线(q0)上的一些孤立的点。当,q 1时,等比数列是递增数列;当,等比数列是递增数列;当,时,等比数列是递减数列;当,q 1时,等比数列是递减数列;当时,等比数列是摆动数列;当时,等比数列是常数列。.范例讲解课本P50例1、例2、P51例3 解略。.课堂练习课本P52练习1、2学生分析回答2教学过程及方法问题与情境及教师活动学生活动补充练习1.(1) 一个等比数列的第9项是,公比是,求它的第1项(答案:=2916)(2)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项(答案:=5, =q=40)教学小结本节学习内容:等比数列的概念和等比数列的通项公式课后反思3