完整word版,材料力学公式汇总完全版,推荐文档.docx

上传人:李司机 文档编号:4710793 上传时间:2023-05-10 格式:DOCX 页数:14 大小:70.01KB
返回 下载 相关 举报
完整word版,材料力学公式汇总完全版,推荐文档.docx_第1页
第1页 / 共14页
完整word版,材料力学公式汇总完全版,推荐文档.docx_第2页
第2页 / 共14页
完整word版,材料力学公式汇总完全版,推荐文档.docx_第3页
第3页 / 共14页
完整word版,材料力学公式汇总完全版,推荐文档.docx_第4页
第4页 / 共14页
完整word版,材料力学公式汇总完全版,推荐文档.docx_第5页
第5页 / 共14页
点击查看更多>>
资源描述

《完整word版,材料力学公式汇总完全版,推荐文档.docx》由会员分享,可在线阅读,更多相关《完整word版,材料力学公式汇总完全版,推荐文档.docx(14页珍藏版)》请在三一办公上搜索。

1、1截面几何参数序号公式名称公式符号说明(1-1)截面形心位置JzdAJydAZ=-A1.V=-ACAcAZ为水平方向Y为竖直方向(1-2)1方面形心位置ZZAZyAzcAiiycii(1.3)面积矩SJdA,S=JzdAZVAA(1.4)面积矩StZ=Av.iSJAZii(1-5)截面形心位置z=.y=CACA(1.6)面积矩Sy=Az1;Sz=Ayc(1.7)轴惯性矩J2dA1I=Z2dAIz=NyA(1-8)极惯必矩p=Jp2dAA(1-9)极惯必矩Ip=I+1Zy(1.10)惯性积I=JzydAZyA(1.11)轴惯性矩I=i2A1I=i2AZZyy(1.12)惯性半径(回转半径)&i=

2、Ay(1.13)面积矩轴惯性矩极惯性矩惯性积SZ=SzS=SyIZ=IPidIyIP=IPi=zyIZyi(1.14)平行移轴公式I=I+aZZCA2Iy=Iyc+b2AI=I+abAzyzcyc2应力与应变序号公式名称公式符号说明(2.1)轴心拉压杆横截面上的应力r=N一A(2.2)危险截面上危险点上的应力=Nmaxm3a)轴心拉压杆的纵向线应变1.=一I3b)轴心拉压杆的纵向绝对应变1.=I-H=.1.(2.4a)(2.4b)胡克定律=E=qE5)胡克定律I=N.I-EA(2.6)胡克定律1.=1.=ZNIiiiiEAi(2.7)横向线应变=b=b-b-1bb(2.8)泊松比(横向变形系数

3、)V=,=-v9)剪力双生互等定理=Xy10)剪切虎克定理=G(2.11)实心圆截面扭转轴横截面上的应力-TpPIP12)实心圆截面扭转轴横截面的圆周上的应力TR=maxP13)抗扭截面模量(扭转抵抗矩)Wr能14)实心圆截面扭转轴横截面的圆周上的应力T=maxVVT15)圆截面扭转轴的变形T.I=GTP16)圆截面扭转轴的变形=H1.iG1.pi单位长度的扭转角=%=工IG1.P18)矩形截面扭转轴长边中点上的剪应力J二工maxWb3TW是矩形截T面W的扭转抵T抗矩19)矩形截面扭转轴短边中点上的剪应力=1max20)矩形截面扭转轴单位长度的扭转角0=工=工G1.TGb4I是矩形截T面的I相

4、当极惯T性矩(2.21)矩形截面扭转轴全轴的扭转角八1.T.I=.1.=aGb4a,B,y与截面高宽比h/b有关的参数22)平面弯曲梁上任一点上的线应变=乂P(2.23)平面弯曲梁上任一点上的线应力O=剧24)平面弯曲梁的曲率1=M7eZ(2.25)纯弯曲梁横截面上任一点的正应力=MyZ(2.26)离中性轴最远的截面边缘各点上的最大正应力=M.yffiamax)Z27)抗弯截面模量(截面对弯曲的抵抗矩)W=zymax28)离中性轴最远的截面边缘各点上的最大正应力M=-maxWZ29)横力弯曲梁横截面上的剪应力=VS*TtTZs被切割面Z积对中性轴的面积矩。30)中性轴各点的剪应力=VS-ern

5、e*-maxbZ(2.31)矩形截面中性轴各点的剪应力3VT=一max2bh32)工字形和T形截面的面积矩$=ZAyzjci33)平面弯曲梁的挠曲线近似微分方程E1.v=-M(x)ZV向下为正X向右为正(2.34)平面弯曲梁的挠曲线上任一截面的转角方程E1.v=EIo=-1.(x)dx+CZZ35)平面弯曲梁的挠曲线上任一点挠度方程E1.v=-JJ1.(x)dxdx+Cx+DZ36)双向弯曲梁的合成弯矩M=M+M2*y(2.37a)拉(压)弯组合矩形截面的中性轴在Z轴上的截距=z=-i2a#ZOZPZ,y是集中PP力作用点的标37b)拉(压)弯组合矩形或面的中性轴在Y轴上的截距a=Y=yOyP

6、3应力状态分析序号公式名称公式符号说明(3.1)单元体上任意截面上的正应力+-ycos2a-sin2a=*a22X(3.2)单元体上任意截面上的剪应力-ySin2a+cos2a=-a2X(3.3)主平面方位角-2ta2a=-一氏-(a与反号)00XXy(3.4)大主应力的计算公式+卜O-、=*rJ1.*-max2VI2,2+2X(3.5)主应力的计算公式=+I(O-)max22J2+2X(3.6)单元体中的最大剪应力=-I3-max2(3.7)主单元体的八面体面上的剪应力一1一-)2(o-Q2(4-)3v1213232(3.8)面上的线应变+-+H*yCs2hXySin2222(3面与a+90

7、o面之间的角应变=-(-)sin2+cos2aXyXyxy(3.10)主应变方向公式tan2a0Xy(3.11)最大主应变=+1(-max2H2,2y2十Xy(3.12):最小主应变=+1(-max2vxTiuy2Y2+#(3.13)的替代公Xy式=2-xy45。y(3.14)主应变方向公式2tan2=%O-Xy(3.15):最大主应变+=y-+Jmax2TI一8、46e-I2J2(-、46e-2J2(3.16):最小主应变=+max-X+/2X一45。、H,2-245o2(3.17)O简单应力状态下的虎克定理,=-V,=-vx%yEF一(3.18)空间应和状态下的虎克定理=11E1.X=X(

8、y)_=1b-VOJ匕-Vky-yzX一11-V1.40ZEZXyT)(3.19)平面应力状态下的虎克定理(应变形式)=U-v)XEXy=H-v)yEyX=-V(+)ZExy(3.20)平面应力状态下的虎克定理(应力形式)E/、=(+v)X1V2Xy=J-(+v)y1-V2yX=0Z(3.21)按主应力、主应变形式写出广义虎克定理=It(1E-V+2=J-J-V&-KJ)E2313=d-V)E312)(3.22):二向应力状区的广义虎克定理_1.(O-VO)1=12=1.、-(-v)221V(+)=-E312(3.23)二向应力状态的广义虎克定理E/、=(+v)11-V212E/、=(+v)1

9、1-V2122-i(+I=O3(3.24)剪切虎克定理=-GXyXy=一GYyzy2=-GZXZX4内力和内力图序号公式名称公式符号说明(4.1a)(4.1b)外力偶的换算公式T=9.55N1.nT=7.02Ne-r(4.2)分布荷载集度剪力、弯矩之间的关系=q()q(x)向上为正(4.3)嘤=V(X)(4.4)dM(x)=q(x)d25强度计算序号公式名称公式(5.1)第一强度理论:最大拉应力理论。,=f(脆性材料)a当IUt时(塑性材料)材料发工脆性断裂破坏。(5.2)第二强度理论:最大伸长线应变理论。WO-v(+o)=f(脆性材料)M当123时,Ut1-V(+)=付(塑性材料)1楞料发生

10、脆性断裂破坏。(5第三强度理论:最大剪应力理论。,=f(塑性材料)当13y时,。-=f(脆性材料)13uc材料发生剪切破坏。(5.4)第四强度理论:八面体面剪切理论。当,1.t-)2C-c)4+o-O1=f(塑性材料)2121323yCk7)2f0-02(+O-O3)J=f(脆性材料)V2121322,uc时,材料发生剪切破坏。(5.5)第一强度理论相当应力,=11(5.6)第二强度理论相当应力*V(+)2_1_23(5.7)第三强度理论相当应力,3=1一(5.8)第四强度理论相当应力g=1.-)2(J(+)214,212132_3(5.9a)由强度理论建立的强度条件(5.9b)(5.9c)(

11、5.9d)由直接试验建立的强度条件Imaxt1cmax,cmax(5.1Oa)轴心拉压杆的强度条件O=Mtmax、t(5.10b)I=煤IJ,cma1八c*=w11.3=一啊(适用于脆性材料)(5.11a)(5.11b)maxIV(+)=2=_231-v(0-)=(1+v)maxmaxtmax1.v1+vI(适用于脆性材料)=-=-(-)2(5.11c)由强度理论建立的扭转轴的强度条件max3maxT=W2Imaxmax(适用于塑性材料)(5.11d)-C4丫2j-)(+12OM2%1+-_嗜kM。)(24-2jTmaXmaxmax)J=1TmaX+max_Tvv-JS(适用于塑性材料)(5.

12、11e)由扭转试验建立的强度条件T=maxWI(5.12a)二tmaMP,VTt(5.12b)平面弯曲梁的正应力强度条件|=1cmax,1.磔Z(5.13)平面弯曲梁的剪应力强t=VS-度条件maxzmax2111(5.14a)(5.14b)平面弯曲梁的主应力强度条件*=JO2+4x2o3.=产+3t24(5.15a)(5.15a)圆截面弯扭组合变形构件的相当弯矩Jm2+m2+2=m.,=-=-Zy313WWb-)2(j_J)214Y212132_3=M2M2+0.75T2_MWVV(5.16)螺栓的抗剪强度条件4N=2(5.17)螺栓的抗挤压强度条件ndN.10厂Eq吃(5.18)贴角焊缝的

13、剪切强度条件=w0.7hI1ffW6刚度校核序号公式名称公式符号说明(6.1)构件的刚度条件r-y(6.2)扭转轴的刚度条件max=G1.p(6.3)平面弯曲梁的刚度条件不叫7压杆稳定性校核序号公式名称公式符号说明(7.1)两端钱支的、细长压杆的、临界力的欧拉公式P二里Cr12I取最小值(7.2)细长压杆在不同支承情况下的临界力公式P_兀2EIcr(.1.)20=.1.I0一计算长度。长度系数;一端固定,一端自由:=2一端固定,一端钱支:=0.7两端固定:=0.5(7压杆的柔度=比1ii=I扈截面的惯VK性半径(回转半径)(7.4)压杆的临界应力=PCUA2E(7.5)欧拉公式的适用范围卜p=

14、(7.6)抛物线公式当匕川嵩时,Vy=f1-(CryC1a(i.APr=Ar=f又Cf压杆材料的屈y服极限;a一常数,一般取a=0.43(7.7)安全系数法校核压杆的稳定公式PPhr1kCrW(7.8)折减系数法校核压杆的稳定性.一折减系数=,小于1冏8动荷载序号公式名称公式符号说明(8.1)动荷系数PN=O=Ad|=_cb=drd-dPN.jJJjP-荷载N-内力应力A一位移d-动卜静(8.2)构件匀加速上升或下降时的动荷系数K=1+a-dga-加速度g-重力加速度(8.3)构件匀加速上升或下降时的动应力=KoQajddjgj(8.4)动应力强度条件=Kdmadjmax-杆件在静荷载作用下的

15、容许应力(8.5)|构件受竖直方司冲击时的动荷系数K=1+1+2HdVbH下落距离(8.6)构件受骤加荷载时的动荷系数K=1+02dH=O(8.7)构件受竖直方向冲击时的动荷系数K=1+1+dgA0V-冲击时的速度(8.8)疲劳强度条件=,maxPKOP-疲劳极限op卜疲劳应力容许值K-疲劳安全系数9能量法和简单超静定问题序号公式名称公式(9.1)外力虚功:W=P+P+M.=Pe1122e33(9.2)内力虚功:W=-NdI-TdIIII(9.3)Md-m庾里:变形体平衡的充要条件是:W+W=0e(9.4)虚功方程:变形体平衡的充要条件是:W=-We(9.5)莫尔定理:=MdJNd1.+TdV

16、dIII(9.6)篁丁锂:=M-Mdx+KV-Vdx+Xd+J-T1.1.1.IUAIbAui-P(9.7)桁架的莫尔定理:NN=I1.A(9.8)变形能:U=-W(内力功)(99)变形能:U=W(外力功)e(9.10)外力功表示的变形能:=1P+1P+.1P=1口A-P21122222II(9.11)内力功表示的变物能:=”xv2(x)dxdxJ_2白2GA1.2EA2(x)dx2GIP(9.卡氏第二定理:Ui-Pi(9.卡氏第二定理计算位移公式:_M_Mdx_NdxTiIE1.PvGAPdX1.1.d,EAP,(9.14)卡氏第二定理计算桁架位落公金:GIPNN1.iEAP(9.卡氏第二定理计算超静定问题:MMdxBy0,EIR(9.16)莫尔定理计算超静定问题:MMdxIE1.(9.一次超静定结构的力法方程:X0HiIP(9.18)X方向有位移时的力法方程:X1!1IP(9.自由项公式:IPiEI(9.20)主系数公式:2Mj-dx,iEI(9.21)桁架的主系数与自由项公式:2-I1H1EAININ1.ip1.EA

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号