二次函数图像与系数关系含答案.doc

上传人:小飞机 文档编号:4768687 上传时间:2023-05-14 格式:DOC 页数:11 大小:174KB
返回 下载 相关 举报
二次函数图像与系数关系含答案.doc_第1页
第1页 / 共11页
二次函数图像与系数关系含答案.doc_第2页
第2页 / 共11页
二次函数图像与系数关系含答案.doc_第3页
第3页 / 共11页
二次函数图像与系数关系含答案.doc_第4页
第4页 / 共11页
二次函数图像与系数关系含答案.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

《二次函数图像与系数关系含答案.doc》由会员分享,可在线阅读,更多相关《二次函数图像与系数关系含答案.doc(11页珍藏版)》请在三一办公上搜索。

1、二次函数图像与系数关系一选择题(共9小题)1(2013义乌市)如图,抛物线y=ax2+bx+c与x轴交于点A(1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:当x3时,y0;3a+b0;1a;3n4中,正确的是()ABCD考点:二次函数图象与系数的关系专题:计算题;压轴题分析:由抛物线的对称轴为直线x=1,一个交点A(1,0),得到另一个交点坐标,利用图象即可对于选项作出判断;根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=2a,将其代入(3a+b),并判定其符号;根据两根之积=3,得到a=,然后根据c的取值范围利用不等式的性

2、质来求a的取值范围;把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围解答:解:抛物线y=ax2+bx+c与x轴交于点A(1,0),对称轴直线是x=1,该抛物线与x轴的另一个交点的坐标是(3,0),根据图示知,当x3时,y0故正确;根据图示知,抛物线开口方向向下,则a0对称轴x=1,b=2a,3a+b=3a2a=a0,即3a+b0故错误;抛物线与x轴的两个交点坐标分别是(1,0),(3,0),13=3,=3,则a=抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),2c3,1,即1a故正确;根据题意知,a=,=1,b=2a=,n=a+b+c=c2c3,

3、c4,即n4故错误综上所述,正确的说法有故选D点评:本题考查了二次函数图象与系数的关系二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定2(2013烟台)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=1,且过点(3,0)下列说法:abc0;2ab=0;4a+2b+c0;若(5,y1),(,y2)是抛物线上两点,则y1y2其中说法正确的是()ABCD考点:二次函数图象与系数的关系专题:压轴题分析:根据图象得出a0,b=2a0,c0,即可判断;把x=2代入抛物线的解析式即可判断,求出点(5,y1)关于对称轴的对称点的坐标是(3

4、,y1),根据当x1时,y随x的增大而增大即可判断解答:解:二次函数的图象的开口向上,a0,二次函数的图象y轴的交点在y轴的负半轴上,c0,二次函数图象的对称轴是直线x=1,=1,b=2a0,abc0,正确;2ab=2a2a=0,正确;二次函数y=ax2+bx+c图象的一部分,其对称轴为x=1,且过点(3,0)与x轴的另一个交点的坐标是(1,0),把x=2代入y=ax2+bx+c得:y=4a+2b+c0,错误;二次函数y=ax2+bx+c图象的对称轴为x=1,点(5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x1时,y随x的增大而增大,3,y2y1,正确;故选C点评:本题考查了二次函

5、数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力3(2013十堰)如图,二次函数y=ax2+bx+c(a0)的图象的顶点在第一象限,且过点(0,1)和(1,0)下列结论:ab0,b24a,0a+b+c2,0b1,当x1时,y0,其中正确结论的个数是()A5个B4个C3个D2个考点:二次函数图象与系数的关系专题:压轴题分析:由抛物线的对称轴在y轴右侧,可以判定a、b异号,由此确定正确;由抛物线与x轴有两个交点得到b24ac0,又抛物线过点(0,1),得出c=1,由此判定正确;由抛物线过点(1,0),得出ab+c=0,即a=b1,由a0得出b1;由a0,及ab0,得出b0

6、,由此判定正确;由ab+c=0,及b0得出a+b+c=2b0;由b1,c=1,a0,得出a+b+ca+1+12,由此判定正确;由图象可知,当自变量x的取值范围在一元二次方程ax2+bx+c=0的两个根之间时,函数值y0,由此判定错误解答:解:二次函数y=ax2+bx+c(a0)过点(0,1)和(1,0),c=1,ab+c=0抛物线的对称轴在y轴右侧,x=0,a与b异号,ab0,正确;抛物线与x轴有两个不同的交点,b24ac0,c=1,b24a0,b24a,正确;抛物线开口向下,a0,ab0,b0ab+c=0,c=1,a=b1,a0,b10,b1,0b1,正确;ab+c=0,a+c=b,a+b+

7、c=2b0b1,c=1,a0,a+b+c=a+b+1a+1+1=a+20+2=2,0a+b+c2,正确;抛物线y=ax2+bx+c与x轴的一个交点为(1,0),设另一个交点为(x0,0),则x00,由图可知,当x0x1时,y0,错误;综上所述,正确的结论有故选B点评:本题主要考查二次函数图象与系数之间的关系,不等式的性质,难度适中二次函数y=ax2+bx+c(a0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;抛物线与x轴的交点个数,决定了b24ac的符号,此外还要注意二次函数与方程之间的转换4(2012沙坪坝区模拟)二次函数y=a

8、x2+bx+c(a0)的图象如图所示,则下列结论中,正确的是()Aabc0Ba+cbCb2aD4a2bc考点:二次函数图象与系数的关系;二次函数与不等式(组)专题:压轴题分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及图象经过的点的情况进行推理,进而对所得结论进行判断解答:解:A、图象开口向下,a0,与y轴交于正半轴,c0,对称轴在y轴左侧,0,b0,abc0,故本选项错误;B、当x=1时,对应的函数值y0,即ab+c0,a+cb,故本选项错误;C、抛物线的对称轴为直线x=1,又a0,b2a,故本选项正确;D、当x=2时,对应的函数值y0,即4a

9、2b+c0,4a2bc,故本选项错误故选C点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与不等式的关系,难度中等5(2013鄂州)小轩从如图所示的二次函数y=ax2+bx+c(a0)的图象中,观察得出了下面五条信息:ab0;a+b+c0;b+2c0;a2b+4c0;你认为其中正确信息的个数有()A2个B3个C4个D5个考点:二次函数图象与系数的关系专题:压轴题分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断解答:解:如图,抛物线开口方向向下,a0

10、对称轴x=,b=a0,ab0故正确;如图,当x=1时,y0,即a+b+c0故正确;如图,当x=1时,y=ab+c0,2a2b+2c0,即3b2b+2c0,b+2c0故正确;如图,当x=时,y0,即ab+c0a2b+4c0,故正确;如图,对称轴x=,则故正确综上所述,正确的结论是,共5个故选D点评:本题考查了二次函数图象与系数的关系二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定6(2013德州)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:b24c0;b+c+1=0;3b+c+6=0;当1x3时,x2+(b1)x+c0其中正

11、确的个数为()A1B2C3D4考点:二次函数图象与系数的关系专题:压轴题分析:由函数y=x2+bx+c与x轴无交点,可得b24c0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1x3时,二次函数值小于一次函数值,可得x2+bx+cx,继而可求得答案解答:解:函数y=x2+bx+c与x轴无交点,b24c0;故错误;当x=1时,y=1+b+c=1,故错误;当x=3时,y=9+3b+c=3,3b+c+6=0;正确;当1x3时,二次函数值小于一次函数值,x2+bx+cx,x2+(b1)x+c0故正确故选B点评:主要考查图象与二次函数系数之间的关系此题难度适中,注意掌握数形结合思

12、想的应用7(2012天门)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(1,0),(3,0)对于下列命题:b2a=0;abc0;a2b+4c0;8a+c0其中正确的有()A3个B2个C1个D0个考点:二次函数图象与系数的关系专题:压轴题分析:首先根据二次函数图象开口方向可得a0,根据图象与y轴交点可得c0,再根据二次函数的对称轴x=,结合图象与x轴的交点可得对称轴为x=1,结合对称轴公式可判断出的正误;根据对称轴公式结合a的取值可判定出b0,根据a、b、c的正负即可判断出的正误;利用ab+c=0,求出a2b+4c0,再利用当x=4时,y0,则16a+4b+c0,由知

13、,b=2a,得出8a+c0解答:解:根据图象可得:a0,c0,对称轴:x=0,它与x轴的两个交点分别为(1,0),(3,0),对称轴是x=1,=1,b+2a=0,故错误;a0,b0,c0,abc0,故错误;ab+c=0,c=ba,a2b+4c=a2b+4(ba)=2b3a,又由得b=2a,a2b+4c=7a0,故此选项正确;根据图示知,当x=4时,y0,16a+4b+c0,由知,b=2a,8a+c0;故正确;故正确为:两个故选:B点评:此题主要考查了二次函数图象与系数的关系,关键是熟练掌握二次项系数a决定抛物线的开口方向,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项

14、系数a共同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c)8已知:二次函数y=ax2+bx+c(a0)的图象如图所示,下列结论中:abc0;2a+b0;a+bm(am+b)(m1的实数);(a+c)2b2;a1,其中正确的是()A2个B3个C4个D1个考点:二次函数图象与系数的关系分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断解答:解:抛物线的开口向上,a0,与y轴的交点

15、为在y轴的负半轴上,c0,对称轴为x=0,a、b异号,即b0,又c0,abc0,故本选项正确;对称轴为x=0,a0,1,b2a,2a+b0;故本选项错误;当x=1时,y1=a+b+c;当x=m时,y2=m(am+b)+c,当m1,y2y1;当m1,y2y1,所以不能确定;故本选项错误;当x=1时,a+b+c=0;当x=1时,ab+c0;(a+b+c)(ab+c)=0,即(a+c)2b2=0,(a+c)2=b2故本选项错误;当x=1时,ab+c=2;当x=1时,a+b+c=0,a+c=1,a=1+(c)1,即a1;故本选项正确;综上所述,正确的是有2个故选:A点评:本题主要考查图象与二次函数系数

16、之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换;二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a0;否则a0;(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c0;否则c0;(4)b24ac由抛物线与x轴交点的个数确定:2个交点,b24ac0;1个交点,b24ac=0,没有交点,b24ac09(2013莒南县二模)已知二次函数y=ax2+bx+c(a0)的图象如图所示,有下列5个结论:abc0;ba+c;4a+2b+c0;2c3b;a+bm(am+b)(m1

17、的实数)其中正确的结论有()A2个B3个C4个D5个考点:二次函数图象与系数的关系专题:压轴题;数形结合分析:观察图象:开口向下得到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0;当x=1时图象在x轴下方得到y=ab+c0,即a+cb;对称轴为直线x=1,可得x=2时图象在x轴上方,则y=4a+2b+c0;利用对称轴x=1得到a=b,而ab+c0,则bb+c0,所以2c3b;开口向下,当x=1,y有最大值a+b+c,得到a+b+cam2+bm+c,即a+bm(am+b)(m1)解答:解:开口向下,a0;对称轴在y轴的右侧,a、b异号,则b0

18、;抛物线与y轴的交点在x轴的上方,c0,则abc0,所以不正确;当x=1时图象在x轴下方,则y=ab+c0,即a+cb,所以不正确;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c0,所以正确;x=1,则a=b,而ab+c0,则bb+c0,2c3b,所以正确;开口向下,当x=1,y有最大值a+b+c;当x=m(m1)时,y=am2+bm+c,则a+b+cam2+bm+c,即a+bm(am+b)(m1),所以正确故选B点评:本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0)的图象,当a0,开口向上,函数有最小值,a0,开口向下,函数有最大值;对称轴为直

19、线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c0,抛物线与y轴的交点在x轴的上方;当=b24ac0,抛物线与x轴有两个交点二填空题(共1小题)10(2013柳林县一模)二次函数y=ax2+bx+c(a,b,c是常数,a0)图象的对称轴是直线x=1,其图象的一部分如图所示对于下列说法:abc0;当1x3时,y0;3a+c0;ab+c0,其中正确的是(把正确的序号都填上)考点:二次函数图象与系数的关系分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断解答:解:根据图象可得

20、:a0,b0,c0则abc0,故正确;当1x3时图象在x轴的上方,且有的点在x轴的下方,故错误;根据图示知,该抛物线的对称轴直线是x=1,即=1,则b=2a那么当x=1时,y=ab+c=a+2a+c=3a+c0,故正确;当x=1时,y=ab+c一定在x轴的下方,因而ab+c0,故正确故答案是:点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用(2013绵阳)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:2a+b0;bac;若1mn1,则m+n;3|a|+|c|2|b|其中正确的结论是(写出你认为正确的所

21、有结论序号)考点:二次函数图象与系数的关系专题:压轴题分析:分别根据二次函数开口方向以及对称轴位置和图象与y轴交点得出a,b,c的符号,再利用特殊值法分析得出各选项解答:解:抛物线开口向下,a0,2a0,对称轴x=1,b2a,2a+b0,故选项正确;b2a,b2a0a,令抛物线解析式为y=x2+bx,此时a=c,欲使抛物线与x轴交点的横坐标分别为和2,则=,解得:b=,抛物线y=x2+x,符合“开口向下,与x轴的一个交点的横坐标在0与1之间,对称轴在直线x=1右侧”的特点,而此时a=c,(其实ac,ac,a=c都有可能),故选项错误;1mn1,2m+n2,抛物线对称轴为:x=1,2,m+n,故选项正确;当x=1时,a+b+c0,2a+b0,3a+2b+c0,3a+c2b,3ac2b,a0,b0,c0(图象与y轴交于负半轴),3|a|+|c|=3ac2b=2|b|,故选项正确故答案为:点评:此题主要考查了二次函数图象与系数的关系,利用特殊值法求出m+n的取值范围是解题关键11 / 11

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 生活休闲 > 在线阅读


备案号:宁ICP备20000045号-2

经营许可证:宁B2-20210002

宁公网安备 64010402000987号