《人教版九年级二次函数图像.ppt》由会员分享,可在线阅读,更多相关《人教版九年级二次函数图像.ppt(13页珍藏版)》请在三一办公上搜索。
1、二次函数y=ax2 的图象和性质,x,y,函数图象画法,列表,描点,连线,0,0.25,1,2.25,4,0.25,1,2.25,4,描点法,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,0,-0.25,-1,-2.25,-4,-0.25,-1,-2.25,-4,注意:列表时自变量取值要均匀和对称。,下面是两个同学画的
2、y=0.5x2 和 y=-0.5x2的图象,你认为他们的作图正确吗?为什么?,0,0.5,2,4.5,8,0.5,2,4.5,8,列表参考,0,0.5,2,4.5,8,0.5,2,4.5,8,0,1.5,-6,1.5,-6,二次函数y=ax2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线。,这条抛物线关于y轴对称,y轴就是它的对称轴。,这条抛物线关于y轴对称,y轴就是它的对称轴。,这条抛物线关于y轴对称,y轴就是它的对称轴。,对称轴与抛物线的交点叫做抛物线的顶点。,对称轴与抛物线的交点叫做抛物线的顶点。,对称轴与抛物线的交点叫做抛物线的顶点。,(0,0),(0,0),y轴,y轴,在x轴的
3、上方(除顶点外),在x轴的下方(除顶点外),向上,向下,当x=0时,最小值为0。,当x=0时,最大值为0。,二次函数y=ax2的性质,、顶点坐标与对称轴,、位置与开口方向,、增减性与极值,2、练习2,3、想一想,在同一坐标系内,抛物线y=x2与抛物线 y=-x2的位置有什么关系?如果在同一坐标系内 画函数y=ax2与y=-ax2的图象,怎样画才简便?,4、练习4,动画演示,当a0时,在对称轴的左侧,y随着x的增大而减小。,当a0时,在对称轴的右侧,y随着x的增大而增大。,当a0时,在对称轴的左侧,y随着x的增大而增大。,当a0时,在对称轴的右侧,y随着x的增大而减小。,1、抛物线y=ax2的顶
4、点是原点,对称轴是y轴。,2、当a0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且 向上无限伸展;当a0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且 向下无限伸展。,3、当a0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大。当x=0时函数y的值最小。当a0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大。,二次函数y=ax2的性质,2、根据左边已画好的函数图象填空:(1)抛物线y=2x2的顶点坐标是,对称轴是,在 侧,y随着x的增大而增大;在 侧,y随着x的增大而减小,当
5、x=时,函数y的值最小,最小值是,抛物线y=2x2在x轴的 方(除顶点外)。,(2)抛物线 在x轴的 方(除顶点外),在对称轴的左侧,y随着x的;在对称轴的右侧,y随着x的,当x=0时,函数y的值最大,最大值是,当x 0时,y0.,(0,0),y轴,对称轴的右,对称轴的左,0,0,上,下,增大而增大,增大而减小,0,4、已知抛物线y=ax2经过点A(-2,-8)。(1)求此抛物线的函数解析式;(2)判断点B(-1,-4)是否在此抛物线上。(3)求出此抛物线上纵坐标为-6的点的坐标。,解(1)把(-2,-8)代入y=ax2,得-8=a(-2)2,解出a=-2,所求函数解析式为y=-2x2.,(2)因为,所以点B(-1,-4)不在此抛物线上。,(3)由-6=-2x2,得x2=3,所以纵坐标为-6的点有两个,它们分别是,y=-2x2,我有哪些收获呢?与大家共分享!,学 而 不 思 则 罔,回头一看,我想说,还有什么疑问吗?,再见,