《初一数学三角形与全等三角形知识点大全经典练习含答案.doc》由会员分享,可在线阅读,更多相关《初一数学三角形与全等三角形知识点大全经典练习含答案.doc(13页珍藏版)》请在三一办公上搜索。
1、 初一数学三角形知识点归纳一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角6、三角形分类:不等边三角形 等腰三角形:底边和腰不等的等腰三角形 等边三角形7、三角形两边之和大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形 2)在实际运用中,已经两边,则第三边的取值范围为:两边之差第三边 B.=90,的补角=
2、900,= C.=100,的补角=80, D.两个角互为邻补角16. ABC与ABC中,条件AB= AB,BC= BC,AC =AC,A=A,B=B,C=C,则下列各组条件中不能保证ABCABC的是( ) A. B. C. D. 17如图,在ABC中,AB=AC,高BD,CE交于点O,AO交BC于点F,则图中共有全等三角形( )A7对 B6对 C5对 D4对18如图,在ABC中,C=90,AC=BC,AD平分BAC交BC于点D,DEAB于点E,若DEB的周长为10cm,则斜边AB的长为( )A8 cm B10 cm C12 cm D 20 cm19如图,ABC与BDE均为等边三角形,ABBD,
3、若ABC不动,将BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为( )AAE=CD BAECD CAECD D无法确定20已知P=80,过不在P上一点Q作QM,QN分别垂直于P的两边,垂足为M,N,则Q的度数等于( )A10 B80 C100 D80或100三、解答题(每小题5分,共30分)21.如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为 ,ECDBA你得到的一对全等三角形是 . (第21题)22.如图,EGAF,请你从下面三个条件中再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况),并给予证明.AB=AC,D
4、E=DF,BE=CF,已知:EGAF, = , = ,求证: 证明: (第22题)23. 如图,在ABC和DEF中,B、E、C、F在同一直线上,下面有四个条件,请你在其中选择3个作为题设,余下的1个作为结论,写一个真命题,并加以证明. AB=DE,AC=DF,ABC=DEF,BE=CF (第23题)24. 如图,四边形ABCD中,点E在边CD上.连结AE、BF,给出下列五个关系式:ADBC;DE=CE . 1=2 . 3=4 . AD+BC=AB将其中的三个关系式作为假设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题,书写形式如:如果,那么,并给出证明;(2)用序号再写出三个真命
5、题(不要求证明);(3)真命题不止以上四个,想一想就能够多写出几个真命题 EAB DFC25.已知,如图,D是ABC的边AB上一点,DF交AC于点E, DE=FE, ABFC. 问线段AD、CF的长度关系如何?请予以证明. (第25题)26.如图,已知ABC是等腰直角三角形,C=90.(1)操作并观察,如图,将三角板的45角的顶点与点C重合,使这个角落在ACB的内部,两边分别与斜边AB交于E、F两点,然后将这个角绕着点C在ACB的内部旋转,观察在点E、F的位置发生变化时,AE、EF、FB中最长线段是否始终是EF?写出观察结果.(2)探索:AE、EF、FB这三条线段能否组成以EF为斜边的直角三角
6、形?如果能,试加以证明.四、探究题 (每题10分,共20分)27.如图,OP是MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图,在ABC中,ACB是直角,B=60,AD、CE分别是BAC、BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;(2)如图,在ABC中,如果ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.OPAMNEBCDFACEFBD图图图28.如图a,ABC和CEF是两个大小不等的等边三角形,且有一个公共
7、顶点C,连接AF和BE. (1)线段AF和BE有怎样的大小关系?请证明你的结论; (2)将图a中的CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由; (3)若将图a中的ABC绕点C旋转一定的角度,请你画山一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由; (4)根据以上证明、说理、画图,归纳你的发现). 图a 图b参考答案一、1.DBE, CA 2.ACE, SAS, ACD, ASA(或SAS)3. 64.CD=CD(或AC=AC,或C=C或CAD=CAD)5.平移,翻折 6. 907. 10 8. 20 9. 10. 45二、11.
8、 A 12. D 13. B 14.A 15.C 16.C 17.A 18.B 19.A 20.D三、21.可选择等条件中的一个.可得到ACEADE或ACBADB等. 22.结合图形,已知条件以及所供选择的3个论断,认真分析它们之间的内在联系可选AB=AC,DE=DF,作为已知条件,BE=CF作为结论;推理过程为:EGAF,GED=CFD,BGE=BCA,AB=AC,B=BCA,B=BGEBE=EG,在DEG和DFC中,GED=CFD,DE=DF,EDG=FDC,DEGDFC,EG=CF,而EG=BE,BE=CF;若选AB=AC,BE=CF为条件,同样可以推得DE=DF, 23.结合图形,认真
9、分析所供选择的4个论断之间的内在联系由BE=CF还可推得BC=EF,根据三角形全等的判定方法,可选论断:AB=DE,AC=DF,BE=CF为条件,根据三边对应相等的两个三角形全等可以得到:ABCDEF,进而推得论断ABC=DEF,同样可选AB=DE,ABC=DEF,BE=CF为条件,根据两边夹角对应相等的两个三角形全等可以得到:ABCDEF,进而推得论断AC=DF.24. (1)如果,那么证明:如图,延长AE交BC的延长线于F 因为ADBC 所以 1=F又因为AED =CEF ,DE=EC所以ADE FCE,所以AD=CF,AE=EF因为1=F ,1=2 所以2=F所以AB=BF.所以3=4
10、所以AD+BC=CF+BC=BF=AB(2)如果,那么;如果,那么;如果,那么.(3) 如果,那么;如果,那么;如果,那么.25. (1)观察结果是:当45角的顶点与点C重合,并将这个角绕着点C在重合,并将这个角绕着点C在ACB内部旋转时,AE、EF、FB中最长的线段始终是EF.(2)AE、EF、FB三条线段能构成以EF为斜边的直角三角形,证明如下:在ECF的内部作ECG=ACE,使CG=AC,连结EG,FG,ACEGCE,A=1,同理B=2,A+B=90,1+2=90,EGF=90,EF为斜边.四、27.(1)FE与FD之间的数量关系为FE=FD(2)答:(1)中的结论FE=FD仍然成立 图
11、 图证法一:如图1,在AC上截取AG=AE,连接FG 1=2,AF=AF,AE=AG AEFAGF AFE=AFG,FG=FE B=60,且AD、CE分别是BAC、BCA的平分线 2+3=60,AFE=CFD=AFG=60 CFG=60 4=3,CF=CF,图 CFGCFD FG=FD FE=FD证法二:如图2,过点F分别作FGAB于点G,FHBC于点H B=60,且AD、CE分别是BAC、BCA的平分线 2+3=60 GEF=60+1,FG=FH HDF=B+1 GEF=HDF EGFDHF FE=FD28. (1)AF=BE. 证明:在AFC和BEC中,ABC和CEF是等边三角形,AC=BC,CF=CE,ACF=BCE=60.AFCBEC. AF=BE. (2)成立. 理由:在AFC和BEC中, ABC和CEF是等边三角形, AC=BC,CF=CE,ACB=FCE=60. ACB-FCB=FCE-FCB. 即ACF=BCE. AFCBEC. AF=BE. (3)此处图形不惟一,仅举几例. 如图,(1)中的结论仍成立. (4)根据以上证明、说明、画图,归纳如下:如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE.13 / 13