《本科论文基于单片机的流量信号检测系统设计.doc》由会员分享,可在线阅读,更多相关《本科论文基于单片机的流量信号检测系统设计.doc(46页珍藏版)》请在三一办公上搜索。
1、xx大学学士学位论文基于单片机的流量信号检测系统设计摘要在工业自动化中,任何控制系统都是从生产过程运行的信息测量开始的,过程变量的自动检测仪表是自动化系统革命的关键。和温度、压力一样,流量也是生产过程中的重要变量。流量的精确测量在节能降耗、经济核算、自动控制等方面有着广泛的应用。涡街流量计以其自身的一系列优点己经成为流量测量仪表家庭中不可缺少的一员,在计量检测中发挥着越来越大的作用。本文研究一种适用于微小流量信号检测的流量测量系统,该流量计是基于涡街流量计原理,即流体产生漩涡,漩涡分离产生应力,漩涡的分离频率等同于应力的变化频率,通过测量应力的周期变化知道漩涡分离频率,从而准确的反映被测液体的
2、流速。本文详述了涡街流量计及压电式传感器的原理,并设计了信号调理电路,处理来自压力传感器的微弱电压信号,使之能够满足单片机对输入信号的要求。另外本文还设计了智能化单片机软硬件系统并对系统进行了功能扩展,使整个系统不仅能够准确实时地反映被测流量的大小,而且能够实现信号的远程传输,为系统的智能化远程控制提供条件。关键词 流量计;流量;单片机;卡门涡街The designment of the flow signal detection system based on SCMAbstractIn industrial automation, many control systems begin fr
3、om the information from the production process operation.The automatic measuring instrument of the process variable is the key of automation system of revolution. Liking temperature, pressure, flow rate is an important variable of the production process. The flow has a wide application in energy con
4、sumption, precise measurement, economic accounting and automatic control. With its own vortex advantages, a flowmeter has become an indispensable member of the family, which has a series of flow measuring devices.It plays a more and more important role in measuring. This article applies a flow measu
5、rement system, which is used in the minor flow signal detection of the flow measurement system. The flowmeter is based on the principle of vortex flowmeter.The flow makes the vortex.The separating of the vortex makes the stress. The frequency of the flow separation equals the stress frequency.We kno
6、ws the accurate flow by the frequency of the flow separation, which is calculated from the the stress frequency.This article describes the principle of vortex flowmeter and the piezoelectric sensors and designs the singal condition circuit, which process the weak signal from pressure sensor, to meet
7、 the requirements of the input signal chip. Additionally, this article also micro controller hardware and software design of the system and intelligent function extension of the system, the system can not only accurately measured by real-time reflect the size of the traffic signal, and to realize th
8、e remote transmission system, intelligent remote control to provide conditions.Keywords flowmeter; flow; SCM; Karman vortex不要删除行尾的分节符,此行不会被打印- II -目录摘要IAbstractII第1章 绪论11.1 本文的目的和意义11.2 流量检测仪表的现状11.3 流量检测技术种类和特点21.3.1涡街测量方法21.3.2差压测量方法31.3.3电磁测量方法31.3.4容积测量方法41.3.5涡轮测量方法41.3.6超声测量方法51.4 研究内容5第2章 流量测
9、量基本概念62.1 流量概念62.2 流量测量参数62.3 本章小结8第3章 涡街流量计基本概念93.1 涡街流量计原理及模型93.1.1 卡门涡街93.1.2 物理模型103.1.3 应用中的问题113.2本章小结11第4章 涡街流量计硬件设计124.1 硬件电路总体设计124.2 传感器部分电路134.2.1 传感器134.2.2 传感器信号调节器144.3 信号调理电路的设计164.4单片机硬件电路及周边设计174.4.1单片机介绍174.4.2 液晶显示电路设计194.4.3芯片监控电路的设计204.4.4 通讯接口的设计224.4.5 键盘接口的设计224.5 本章小结23第5章 单
10、片机系统软件的设计245.1 编译环境概述245.2 主程序设计245.3 显示程序设计255.4 键盘程序设计255.5 RS-232接口程序设计265.6 本章小结27结论28致谢29参考文献30附录A31附录B35附录C38附录D39千万不要删除行尾的分节符,此行不会被打印。在目录上点右键“更新域”,然后“更新整个目录”。打印前,不要忘记把上面“Abstract”这一行后加一空行- 42 -哈尔滨理工大学学士学位论文第1章 绪论1.1 本文的目的和意义计量是工业生产的关键。流量的计量是计量科学技术的组成部分之一,它与国民经济、国防建设、科学研究有密切的关系。做好这一工作,对保证产品质量、
11、提高生产效率、促进科学技术的发展都具有重要的作用。特别是在能源危机、工业生产自动化程度愈来愈高的当今时代,流量计在国民经济中的地位与作用更加明显。微小流量的智能检测在工农业生产、国防建设、科学研究等领域有着重要的应用,能够解决过程控制、生产科研中的很多问题。但是目前国内由于技术方面的限制,在微小流量测量领域,特别是对具有腐蚀性、粘稠性微小流量信号的自动检测手段还很不完善,基本属于空白。如果能够解决这些小流量测量方面的问题并制造出产品,就能够缩短与国际同行之间的差距,为我国的科技振兴做出贡献。由于流量是一个动态量,流量测量是一项复杂的技术。从被测流体来说,包括气体、液体和混合流体这三种具有不同物
12、理特性的流体;从测量流体流量时的条件来说,又是多种多样的,如测量时的温度可以从高温到低温,测量时的压力可以从高压到低压;被测流量的大小可以从微小流量到大流量;被测流体的流动状态可以是层流、紊流等等。此外就液体而言,还存在粘度大小不同等情况。因此,为准确的测量流量,就必须研究不同流体在不同条件下的流量测量方法,并提供相应的测量仪表。这是流量计量的主要工作之一。由于被测流体的特性如此复杂,测量条件又各不相同,从而产生了各种不同的测量方法和测量仪表。对流体流量的检测可以用差压流量计、电磁流量计、容积流量计、质量流量计、超声流量计或者涡街流量计等。差压流量计应用范围广,但需要导压管,易泄漏。电磁流量计
13、的计量精度高,但零点稳定性差。容积流量计的机械结构较复杂、体积庞大。质量流量计主要用于质量流量的检测。而涡街流量计精度较高,一般为测量值的0.5%1.5%;测量范围宽,可达10:1或20:1;压力损失小;输出脉冲信号的频率与流量成正比;无零点漂移;在一定的雷诺数范围内,输出信号频率不受流体物理性质(密度、粘度)和组份的影响,即仪表常数仅与漩涡发生体和管道的形状尺寸有关;仪表适用性强,结构简单,安装维护方便。鉴于这些优点,我们选择了涡街流量计进行研究。借助现在发展比较成熟的压力传感器得到与流体的流量相对应的脉冲信号,通过放大、整形及模数转换送单片机处理,得到信号的频率值,再在压力传感器信号提供的
14、辅助信息的帮助下,通过补偿等措施,得到最终的流量值。我们要做的就是如何将压力传感器发出的信号进行处理,然后送到单片机,进行数学运算处理,得到所需的结果。1.2 流量检测仪表的现状目前国外投入使用的流量计有100多种,随着工业生产的自动化、管道化的发展,流量仪表在整个仪表生产中所占比重越来越大。据国外资料表明,在不同的工业部门中所使用的流量仪表占整个仪表总数的1530%。随着仪表智能化技术的发展,流量仪表的发展非常迅猛。尽管如此,由于流量测量技术的复杂化,以及科学技术的迅速发展给流量计量提出更新更高的要求,流量计量的现况远不能满足生产的需要,还有大量的流量计量技术问题有待进一步研究解决。流量仪表
15、的品种、规格、准确度和可靠性尚不能满足生产要求。特别对腐蚀性流体、脏污流体、高粘性流体、多相流体、微小流量等的检测,市场产品有待进一步发展更有效的测量手段。目前国内已形成了相当规模的开发和制造流量仪表行业,我国现有各类仪器仪表企业6千多家,仪器仪表已经形成门类品种比较齐全,具有一定技术基础和生产规模的工业体系,成为亚洲除日本以外第二大仪器仪表生产国。产品在微型化、集成化、智能化、总线化等发展方向上紧跟国际发展的步伐。但我国仪器仪表产品,绝大部分属于中低档技术水平,而且可靠性、稳定性等关键性指标尚未全部达到要求。高档、大型仪器设备几乎全部依赖进口。近年来,我国广大科技工作者借鉴国外一些先进的自动
16、计量技术,并结合我国国情进行改进,将先进的传感器技术与微电脑技术引入到流量计中,使得流量计向多功能、高精度、易安装、高性价比、便于集散控制的方向跨进了一步。但目前与国外同行相比,我国流量仪表仍存在很大差距:产品种类系列不全;产品性能指标低;高技术产品少等等,在国际上处于落后地位,不符合流量仪表未来发展方向。所有这些给我国科技工作者提出了要求:制出性能更强、更加符合生产需要的流量测量系统,迎头赶上国际先进水平在流量测量仪表的市场中,占比例最大的是差压流量计(占28%),其次是电磁流量计(占19%)、容积流量计(占17%)、超声流量计(占4%)、涡街流量计(占4%)、质量流量计(占3.5%)。近年
17、来,涡街流量计、电磁流量计、质量流量计和超声流量计的增长速度较快。1.3 流量检测技术种类和特点常见的流量测量方法有涡街流量测量方法、差压式流量测量方法、浮子流量测量方法、涡轮流量测量方法、电磁流量测量方法、容积式流量测量方法、质量流量测量方法和超声流量测量方法。下面对几种常见的流量测量方法进行简要的介绍。1.3.1涡街测量方法 涡街测量方法是在流体中安放一个非流线型漩涡发生体,流体在发生体两侧交替地分离释放出两串规则地交错排列的漩涡。涡街流量计就是根据涡街测量方法设计的。它按频率检出方式可分为:应力式、应变式、电容式、热敏式、振动体式、光电式及超声式等。这种测量方法的主要优点是:1结构简单牢
18、固;2适用流体种类多;3精度较高;4范围宽;5压损小。这种测量方法的缺点是:1不适用于低雷诺数测量;2需较长直管段;3仪表系数较低(与涡轮流量计相比);4仪表在脉动流、多相流中尚缺乏应用经验。采用这种测量方法制造的涡街流量计是属于最年轻的一类流量计,但其发展迅速,目前已成为通用的一类流量计。1.3.2差压测量方法 差压测量方法是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的。差压式流量计就是按照差压测量方法设计的流量测量仪表,差压式流量计的检测件按其作用原理可分为:水力阻力式、离心式、动压头式、动压头增益式及射流式等。差压式流量计是一类应用最广泛的流量
19、计,在各类流量仪表中其使用量占居首位,在各工业部门的用量约占流量计全部用量的1/41/3。这种测量方法的主要优点是:1应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;2应用范围广泛,至今尚无任何一类流量计可与之相比拟;3检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生产。这种测量方法的缺点是:1测量精度普遍偏低;2范围窄,一般仅3:1 4:l;3现场安装条件要求高;4压损大(指孔板、喷嘴等)。这种测量方法制造的差压式流量计在封闭管道的流量测量中对环境适应性非常强,各种对象都有应用,如流体方面:单相、混相、洁净、脏污、粘性流等;工作状态方面:常压、高压、真空、常温、高温、低温
20、等;管径方面:从几mm到几m;流动条件方面:亚音速、音速、脉动流等。1.3.3电磁测量方法电磁测量方法是根据法拉第电磁感应定律,针对具有导电性液体的流量测量方法。电磁流量计就是根据电磁测量方法设计的。它有一系列优良特性,可以解决其它流量计不易应用的问题,如脏污流、腐蚀流的测量。70、80年代电磁流量在技术上有重大突破,使它成为应用广泛的一类流量计,在流量仪表中其使用量百分数不断上升。这种测量方法的主要优点是;1测量通道是段光滑直管,不会阻塞,适用于测量含固体颗粒的液固二相流体,如纸浆、泥浆、污水等;2不产生流量检测所造成的压力损失,节能效果好;3所测得体积流量实际上不受流体密度、粘度、温度、压
21、力和电导率变化的明显影响;4流量范围大,口径范围宽;5可应用于腐蚀性流体。这种测量方法的缺点是:1不能测量电导率很低的液体,如石油制品;2不能测量气体、蒸汽和含有较大气泡的液体;3不能用于较高温度。采用这种测量方法制造的电磁流量计应用领域广泛,大口径仪表较多应用于给排水工程;中小口径常用于高要求或难测场合,如钢铁工业高炉风口冷却水控制,造纸工业测量纸浆液和黑液,化学工业的强腐蚀液,有色冶金工业的矿浆;小口径、微小口径常用于医药工业、食品工业、生物化学等有卫生要求的场所。1.3.4容积测量方法容积式测量方法利用机械测量元件把流体连续不断地分割成单个已知的体积部分,根据测量室逐次重复地充满和排放该
22、体积部分流体的次数来测量流体体积总量。容积式流量计就是按照容积式测量方法设计的流量测量仪表。容积式流量计按其测量元件分类,可分为椭圆齿轮流量计、刮板流量计、双浮子流量计、旋转活塞流量计、往复活塞流量计、圆盘流量计、液封转筒式流量计及膜式气量计等。这种测量方法的主要优点是:1计量精度高;2安装管道条件对计量精度没有影响;3可用于高粘度液体的测量;4范围宽;5直读式仪表无需外部能源可直接获得累计总量,清晰明了,操作简便。这种测量方法的缺点是:1结果复杂,体积庞大;2被测介质种类、口径、介质工作状态局限性较大;3不适用于高、低温场合;4大部分仪表只适用于洁净单相流体;5产生噪声及振动。采用这种测量方
23、法制造的容积式流量计,常应用于昂贵介质(油品、天然气等)的总量测量。1.3.5涡轮测量方法涡轮测量方法采用多叶片的浮子(涡轮)感受流体平均流速,从而推导出流量或总量。涡轮流量计就是按照涡轮测量方法设计的流量测量仪表。它是速度式流量计中的主要种类。一般它由传感器和显示仪两部分组成,也可做成整体式。涡轮流量计和容积式流量计、质量流量计称为流量计中三类重复性、精度最佳的产品,作为十大类型流量计之一,其产品已发展为多品种、多系列批量生产的规模。这种测量方法的主要优点是:1高精度,在所有流量计中,属于最精确的流量计;2重复性好;3元零点漂移,抗干扰能力好;4范围度宽;5结构紧凑。这种测量方法的缺点是:1
24、不能长期保持校准特性;2流体物性对流量特性有较大影响。采用这种测量方法制造的涡轮流量计在以下一些测量对象获得广泛应用:石油、有机液体、无机液、液化气、天然气和低温流体。1.3.6超声测量方法超声测量方法是通过检测流体流动对超声束(或超声脉冲)的作用来测量流量的方法。超声流量计就是根据超声测量方法设计的。根据对信号检测的原理,超声流量计可分为传播速度差法(直接时差法、时差法、相位差法和频差法)、波束偏移法、多普勒法、互相关法及噪声法等。超声流量计和电磁流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点,近年
25、来它是发展迅速的一类流量计之一。这种测量方法的主要优点是:1可做非接触式测量;2为无流动阻挠测量,无压力损失;3可测量非导电性液体,对无阻挠测量的电磁流量计是一种补充。这种测量方法的缺点是:1传播时间法只能用于清洁液体和气体;而多普勒法只能用于测量含有一定量悬浮颗粒和气泡的液体;2多普勒法测量精度不高。采用这种测量方法制造的超声流量计有如下的广泛应用:传播时间法应用于清洁、单相液体和气体。典型应用有工厂排放液、怪液、液化天然气等;气体应用方面在高压天然气领域已有使用良好的经验;多普勒法适用于异相含量不太高的双相流体,例如:未处理污水、工厂排放液、脏液,通常不适用于非常清洁的液体。1.4 研究内
26、容本文在对流量测量的各种方法和流量仪表的发展动态进行综述的基础上,通过对卡门涡街原理的理解和公式的推导,得出流量和应力频率的关系。然后设计了压电式压力传感器及压力信号调节器和A/D转换电路,把采集的数字信号传递给单片机进行处理,最后由LCD显示并交给上位机处理数据。重点放在了硬件电路的设计。 第2章 流量测量基本概念2.1 流量概念流量定义:流体流过一定截面的体积或者质量与时间之比称为通过该截面的流量。其中,体积与时间之比,称为体积流量;质量与时间之比,称为质量流量。如果流体的流动是不随时间变化的,是定常流,流量就可以用流体在单位时间内通过一定截面的体积或质量来表示。当流体的流动是随时间变化的
27、,为非定常流,此时流量随时间不断变化。因此,对某一时刻的流量,可以假定在该时刻前后某一微小的t时间内流动为恒定,用该微小时间间隔内流过的流体体积或质量来表示。设流体通过截面中的某一微小面积为,并且选取通过该微小面积流体的流速为,则流体通过微小面积的体积流量,为: (21)流体通过整个截面积的体积流量q,可用对截面积F积分求出: (22)质量流量可以用流体体积流量与流体密度之积来表示。若质量流量为,流体密度为,则: (23)上式中,体积流量的单位为m3/或m3/;质量流量的单位为kg/s或kg/h。在工程应用中,常常同时要求测量经过一段时间流过管道的总的流体量,即要求测量通过管道的流体的累积流量
28、。如果流体的体积流量为,质量流量为,那么,在时间间隔t内流体流过的累积流量,可用下式表示:流体质量累积流量: (24)流体体积累积流量: (25)累积体积流量的单位为m3,累积质量流量的单位为kg。所以,如果流动为稳定流,流体密度为,由上式可以得到: (26)从上面可以看出,累计流量的测量就是流体体积的测量或者流体质量的测量。2.2 流量测量参数1静态特性传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特
29、性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。2动态特性所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。3流量计特征曲线流量计特性曲线是反映随流量变化流量计性能变化的曲线。特性曲线较常用的有两种不同表示形式:一种是表示流量计的某种特性(通常是流
30、量系数或仪表系数,也有的是某一与流量有关的输出量)与流量或雷诺数的关系;另一种是表示流量计测量误差随流量或雷诺数变化的关系,这种特性曲线一般称为流量计的误差特性曲线。流量计的特性曲线可以通过对流量计进行理论分析而得到,而更为准确可靠的是对流量计进行标定得到,即在整个流量计的流量范围内进行一系列的实验得到。4线性度通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各
31、点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。5灵敏度灵敏度是指传感器在稳态工作情况下输出量变化y对输入量变化x的比值。它是输出输入特性曲线的斜率。如果传感器的输出和输入之间是线性关系,则灵敏度是一个常数。否则,它将随输入量的变化而变化。灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化时,输出电压变化为,则其灵敏度应表示为。当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。6分辨力分辨力是指传感器可能感受到的被测量的最小变化的能力。也就是说,如果输入量从
32、某一非零值缓慢地变化。当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨力时,其输出才会发生变化。通常传感器在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。上述指标若用满量程的百分比表示,则称为分辨率。7雷诺数测量管内流体流量时往往必须了解其流动状态、流速分布等。雷诺数就是表征流体流动特性的一个重要参数。流体流动时的惯性力和粘性力(内摩擦力)之比称为雷诺数,用符号表示,Re是一个无因次量。 (27)式中的动力粘度用运动粘度来代替,因为,则 (28)式中:
33、 -流体的平均速度 -流束的定型尺寸 -在工作状态下流体的运动粘度 -动力粘度 -被测流体密度由上式可知,雷诺数油的大小取决于三个参数,即流体的速度、流束的定型尺寸以及工作状态下的粘度。雷诺数小,意味着流体流动时各质点间的粘性力占主要地位,流体各质点平行于管路内壁有规则地流动,呈层流流动状态。雷诺数大,意味着惯性力占主要地位,流体呈紊流流动状态,一般管道雷诺数Re4000为紊流状态,Re=20004000为过渡状态。在不同的流动状态下,流体的运动规律.流速的分布等都是不同的,因而管道内流体的平均流速与最大流速的比值也是不同的。因此雷诺数的大小决定了粘性流体的流动特性。2.3 本章小结本章介绍了
34、流量的定义,流量测量中常用的术语,以及液体管内流动的基本知识,并且详细叙述了测量流量时传感器的各种特性,正确使用和测量传感器的特性对实验结果分析有很大帮助;是正确进行流量测量的基础。本章为以后各章节的分析奠定了一定的基础。第3章 涡街流量计基本概念3.1 涡街流量计原理及模型 3.1.1 卡门涡街涡街流量计是利用流体力学卡门涡街原理,即在流动的流体中插入一个非流线型断面的柱体,流体流动受到影响,在一定的雷诺数范围内将在柱体下游,产生漩涡。当这些漩涡排列成两排且当两排漩涡的间距h与同列中两相邻漩涡的间距L之比满足h/L=0.281时,就能得到稳定的交替排列漩涡。这种稳定而规则地排列的漩涡称为“卡
35、门涡街”。Vh漩涡漩涡发生体VpVL图 3-1 卡门涡街原理图实验表明,漩涡分离频率,即单位时间内在由柱体一侧产生的漩涡数目f与流体速度v成正比,与柱体迎流面的宽度d成反比,即: (31)其中: -漩涡分离频率() St -斯特劳哈尔数(无量纲)。对于一定柱形在一定流量范围内是雷诺数的函数。 -漩涡发生体两侧的流速(m/s) -漩涡发生体迎流宽度(mm)用管道内平均流速代替v,根据流体连续方程,有 (32)其中:-管道内流体平均速度,m/s -涡街流量计内壳的内径,mm将3-2式带入3-1式可以得到: (33)对于许多经过适当选择的柱型,由于St数在很宽的雷诺数范围内可以看成是常数。一旦柱体和
36、流道的几何尺寸及其形状确定后,便与成为简单的正比关系,因而检测出漩涡的频率,便可以测得流速,并以此推知其流量。这就是涡街流量计的基本原理。瞬时流量为: (34)一个简化了的计算瞬时流量的计算公式为: 其中,为补偿后的流体密度,K为仪表常数。3.1.2 物理模型涡街流量计由壳体、漩涡发生体和放大器组成。壳体内插入柱体,由其产生的涡街信号可用各种检测方式检出,经放大器放大后,输出脉冲信号。涡街流量计是一种无运动部件的流量计,按其原理分类属于振荡型流量计。同属于这类流量计还有漩涡进动型流量计,振荡射流型流量计。由于涡街流量计不含有运动部件及对流体冲刷敏感的部件,因而在使用过程中,可靠性高,使用寿命长
37、,并具有一般节流式流量计的优点,精确度稳定,再现性好。在大批量生产和工艺稳定的条件下,可以采用“干校验法”,即不必逐台仪表进行实液标定,可根据结构尺寸直接确定仪表常数及仪表精度。涡街流量计是一种数字式流量计,它输出的脉冲信号的频率与流量成线性关系,同时具有量程宽、重复性好、便于远距离无精度损失的传输。此外仪表常数及精度不受介质的压力、温度、密度等变量的影响。一旦流量计的结构确定,流体振荡就服从一定的客观规律,其振荡频率不能人为地改变,因而仪表常数及其变化规律是客观的。涡街流量计的正式产品目前采用的漩涡发生体是多种多样的,但圆管内大量采用的漩涡发生体都是柱体,其断面形状基本有5种:圆柱、三角柱、
38、矩形柱、梯形柱和T形柱。此外还可以采用以上5种柱型的修改形状或变形,以及几种基本形状组合在一起的组合柱型。组合柱体能在柱体长度方向上同步地分离出漩涡,并且在尽可能宽的流速范围内分离出稳定、规则的涡街。柱体具有远高于涡街频率的自振频率,材质要适当考虑被测介质的要求,与此同时要在较宽的雷诺数范围内具有恒定的St数。其中梯形柱与三角柱相比,更有利于采用应力检测方法,梯形柱的长宽比与三角柱接近,尾部平直便于安装差压传感元件,并且它比组合柱体的结构更简单,产生的漩涡强烈、排列规则,更便于检测,故本系统的漩涡发生体采用梯形柱体。3.1.3 应用中的问题由于温度和压力的变化会对流体的密度产生影响,所以在测量
39、的时候必须对密度的实际值进行补偿,补偿采用以下公式: (35)式中, - 实际密度,kg/m3 - 饱和蒸汽密度,kg/m3 - 水密度,kg/m3 - 干度影响系数其中饱和蒸汽密度和水密度,干度影响系数X依据蒸汽干度S查表。经过查表,得到补偿后的实际密度代入公式计算流体的流量(表附在附录D)。3.2本章小结本章介绍了涡街流量计,用图解和公式推导的方法详细分析了涡街流量计的工作原理和基本特性,并详细阐明了涡街流量计如何与漩涡发生体结合,实现对应力频率的精确检测,对在实践中遇到的影响检测精度的因素做了分析并给出了解决方法。第4章 涡街流量计硬件设计4.1 硬件电路总体设计微处理器是智能化仪表的核
40、心,如同人的大脑一样。在本测量系统中,单片机作为整个系统的核心部件,使系统增强了数据处理、自诊断、显示与报警等功能。单片机的加入,可以用软件代替硬件实现某些功能,使仪表结构大大简化、体积减小、成本降低,而工作的可靠性、灵活性及仪表的功能大为提高。硬件与软件设计是对单片机系统进行开发的重要步骤。单片机应用系统中软硬件设计应遵循的要求:1明确系统测试、控制要求,尽量做到模块化编程;2利用单片机指令系统功能强,寻址方式多的优点,尽量编制出层次清楚,运行速度快,占内存少的源程序;3尽量采用己成熟的源程序和模块;4尽可能选择典型电路,使用常规组件;5系统扩展与配置应满足测控功能需要并留有余地,以方便系统
41、软、硬件调试和二次开发;6硬件尽可能简单,能用软件完成的功能尽量用软件完成;7软件结构设计时应注意适当地留有余地。单片机系统的硬件主要包括单片机、传感器、传感器信号调节器、A/D转换、LCD显示电路、芯片监控电路、通信接口电路,如图4-1所示:图 4-1 硬件总体设计图4.2 传感器部分电路4.2.1 传感器利用伴随漩涡分离的物理效应,可以采用热敏、力敏元件或通过光、声调制方法等来检测漩涡分离频率。至今用于检测分离频率的方法和采用的元件是多种多样的,归纳起来有以下几种典型方法:1热敏元件检测方法漩涡分离产生的交变环流所引起的整体表面速度脉动或者交变横向流的频率,用加热的金属丝、热敏电阻器等进行
42、检测。2力敏元件检测方法漩涡分离造成的交变差压、交变升力或者交变升力引起的机械振动,用差动电容、电阻应变片、压电晶体、压电陶瓷等检测。3电磁传感器检测方法漩涡的分离所引起的膜片或者梭球等的往复振动的频率,用电磁传感器检测。4声、光信号调制检测方法利用声束光束通过涡街时受到漩涡的调制,由接收声强光强或相位的脉动频率得到漩涡分离频率。由于涡街流量计是利用流体自身的规则振荡来计量流量的,因而对流体的速度分布及流动噪声,比较敏感,因此在应用过程中对管道安装状况要求较高。对上游不同形式的阻力件必须配置足够长的满足不同要求的直管段,以保证仪表的测量精度。压力传感器可分为液柱式压力传感器、弹性元件传感器、压
43、变电阻式传感器和压电式传感器。液柱式传感器的结构简单,测量精度高,但是测量结果只能就地读取,不能进行远距离传送。弹性元件传感器一般在测量较大压力的场合使用。压变电阻式传感器的灵敏度高、测量范围广、频率响应快,但是易受电阻片结构、贴片用胶、贴片工艺以及工作环境温度影响。而压电晶体传感器采用半导体硅阻效应原理,在单晶硅片上运用独有的激光刻蚀修正技术来制作固态电阻电桥,硅晶体受力后发生相应的微变形,在应力消失后恢复到原来的形状,是一种良好的接收应力的材料,其性能远优于金属材料,灵敏度高(是电阻丝式的50倍)、线性范围大、体积小、结构简单、寿命长,尤其是它的动态响应频带宽、动态误差小,使它在振动等测量
44、中得到广泛的应用。因此,研究的涡街流量计系统使用压电式压力传感器来测量流体的压力。压力传感器选择TPF系列传感器。TPF压力传感器有一个流体测量膜,被设计用于检测高粘度液体,而具有内部测量腔的普通传感器做不到这一点。 图4-2 TPF传感器电气连接图TPF主要特征:1压力范围:010,01000 bar / 0150, 015000 pa2精度等级:0.3%大于50 bar;0.6% 小于或等于5bar3完全不锈钢结构4内部产生标准信号5保护等级:IP654.2.2 传感器信号调节器MAX1450传感器信号调节器用于处理压力传感器送来的信号。它包括一个用于传感器激励的可调节的电流源和一个三字节
45、的可编程放大器(PGA)。通过外部的可调节电阻器、电位器或数模转换器(DA),MAX1450可以对传感器的非线性输出进行补偿。MAX1450能够对传感器信号进行补偿,这使得它在低功耗和中等精度的应用中最理想。MAX1450主要特点:1可对1%的传感器信号进行调节;2使用储存在外部可调节的电阻器、电位计或数模转换器内的系数来更正传感器的非线性;3用于传感器激励的可编程电流源;4快速信道设置时间;5可接受10mV/V到30mV/V的传感器信号输出;6完全的模拟信道;MAX1450的引脚图,与单片机的连接图分别见图4-3,4-4。图 4-3 MAX1450引脚图图4-4 MAX1450与单片机连接图MAX1450的各个引脚功能如下:表4-1 MAX1450引脚功能管脚号代号功能1INP正传感器输入2、3、12、16IC内部连接,断开连接4SOTC偏移量TC输入符号位5SOFF偏移量输入符号位6A1PGA获得设置输入7A0PGA获得设置LSB输入8OFFOC